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In this study M is fixed to 20. FC-KL was investigated for meshes with 1x1, 2x2 and 4x4 elements. 
The mean error variance is plotted for an increasing size N of the eigenvalue problem. The best 
convergence was achieved with FC-KL on a 1x1 mesh and trunk-space. However, FC-KL was 
computationally significantly more expensive to solve than the corresponding EOLE-problem. 

In a next step the obtained random field representations were used to model the random behavior of 
the Young‘s modulus in a structural finite element (FE) problem. A significant speed-up of the time 
needed to assemble and solve the FE-problem was observed for FC-KL compared to EOLE. In this 
case no advantageous behavior of trunk-space over tensor-space could be detected. 

 

Karhunen-Loève expansion 
The Karhunen-Loève (KL) expansion is a method for representing a random field H(x) based on the 
spectral decomposition of its autocovariance function. The expansion writes: 

where the i΄s are independent standard Gaussian random 
variables, and i and φi(x) are the eigenvalues and 
eigenfunctions of the autocovariance function. 

The eigenpairs [i, φi(x)] can be obtained by solving the following integral eigenvalue problem: 
 

 
 

Ordering the eigenpairs w.r.t. the magnitude of the eigenvalues in a descending series and 
truncating it after M terms gives an approximation (discretization) of the random field: 
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Abstract 
A new quasi-meshless method for random field discretization with only a small number of random 
variables in the representation is introduced. The method is based on the Karhunen-Loève (KL) 
expansion, which is optimal among series expansion methods with respect to the mean square 
truncation error. The resulting integral eigenvalue problem in the KL-expansion is discretized using 
a finite cell (FC) like approach; i.e. the domain of computation is extended beyond the physical 
domain up to the boundaries of an embedding domain with a primitive geometrical shape. High 
order polynomials are used as FC shape functions.  
The presented method is compared to the EOLE method. The EOLE method is considerably faster 
than the presented method in obtaining an approximation of a random field.  However, working with 
the random field representation of the finite cell like approach is more efficient than EOLE in terms 
of computational costs. 

 

Motivation 
The Karhunen-Loève (KL) expansion is optimal in the mean square truncation error with respect to 
the number of random variables in the representation. However, its analytical solution is available 
only for a few autocovariance functions and geometries. For general geometries with a complex 
shaped domain a finite element based approach can be chosen to approximate the solution of the 
KL-expansion. However, this requires a spatial decomposition of the domain. Mesh generation for 
arbitrarily shaped domains can be a rather time-consuming task since in many cases it cannot be 
fully automated and manual work of the engineer is necessary. Moreover, the requirements for a 
good random field mesh are in general not the same as the requirements for a good mesh modeling 
the corresponding mechanical system.  
A quasi-meshless approach is to embed the physical domain in a larger domain of primitive 
geometrical shape which can be meshed easily. The shape functions are spanned on the 
embedding fictitious domain. The actual physical domain is taken into account through integration 
because the functions to integrate are considered to be zero outside of the physical domain. This is 
the idea of the finite cell method which shifts the problem with complex geometries from the mesh to 
the integration. 
The present work applies a finite cell like approach to discretize the spatial domain of the random 
field and to solve the KL-expansion numerically. The behavior of the proposed method is compared 
to the EOLE method which is considered an efficient method and is well applied in practice.  
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Conclusion 
Both FC-KL and EOLE are meshless approaches. The FC-KL method is difficult to implement and 
quite expensive to solve compared to the EOLE method. Numerical problems w.r.t. the eigenvalue 
problem to solve may arise. 
Compared to the EOLE method, FC-KL has shown to be more efficient for post-processing the 
random field because it computes a realization of the field faster than EOLE. This is especially 
useful if the random field is used as input for finite element problems where the problem must be 
solved several times for different random field realizations. 
 
 
 
                                 

 

pFEM - Karhunen-Loève 
The integral eigenvalue problem of the KL-expansion can be solved analytically only for few 
autocovariance functions and geometries. For general problems a computational approach is 
necessary. This involves a discretization of the integral eigenvalue problem, and introduces yet 
another approximation to the representation of the RF. This approach is referred to as pFEM-KL. 

The eigenfunctions are approximated as: 

where N is the number of shape functions, Nn(x)L2() are the global 
shape functions and di

n are the coordinates of the ith eigenfunction in the 
basis spanned by the shape functions. 

The approximated integral eigenvalue problem can be written as: 

where the term on the right-hand side is the error 
resulting from the approximation of the eigen-
function. 

Using a Galerkin scheme the coefficients di
n are determined such that the 

error term becomes orthogonal to the subspace spanned  by the shape 
functions. The eigenfunctions must be scaled to be orthonormal. 

The solution is the following general matrix eigenvalue problem:  

The coefficients of the matrices B and M are defined as: 

 

 

 
The mean error variance is defined by the same equation as in case of the analytical Karhunen-
Loève expansion.  

Hierarchic basis 

In this work a hierarchic basis based on the Legendre 
polynomials is chosen as Ansatz space for the shape functions.  
The  first nine one-dimensional polynomials of this space are 
depicted on the left. Two- and three-dimensional spaces can 
be constructed by combining the one-dimensional polynomials 
for the different coordinate directions with each other. In a two-
dimensional setting this results in nodal-, edge- and face-
modes. For the face-modes two different ways of combining 
the one-dimensional polynomials are investigated: tensor-
space and trunk-space, where trunk-space is a sub-space of 
tensor-space (see [1] for a more detailed description). 

 
  
 

 

Random Field 
A continuous real-valued random filed H(x) may be loosely 
defined as a random function which describes a random 
variable (RV) at each point x of a continuous domain . A 
Gaussian random field can be completely defined by its 
mean function (x) and autocovariance function Cov(x,x΄). 
The autocovariance function is expressed in terms of the 
autocorrelation coefficient function ρ(x,x΄) as: 

 

where (x) is the standard deviation function of the random 
field (RF). 

Discretization 

A random field consists of an infinite number of random variables. For computational purposes a 
random field has to be expressed using a finite number M of random variables; this is referred to as 
random field discretization. A random field discretization method is said to be efficient if it accurately 
represents a random field with only a small number of RVs. 

Error variance 

Different error measures can be used to assess the quality of a random field discretization. The 
difference between the original RF and its approximation is known as truncation error H(x).  
 

The variance of the truncation error weighted by the variance of 
the original field is referred to as error variance (x). 

 

The mean error variance is defined as the integral of the error 
variance over the domain weighted by the absolute value of the 
domain. 
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Finite cell based Karhunen-Loève (FC-KL) 
To overcome the problem of meshing geometrically 
complex shaped domains, the physical domain  (1) is 
embedded in a larger fictitious domain * having a 
geometrically primitive shape (2). The fictitious domain can 
be meshed easily (3); the elements of this mesh are called 
finite cells. Consequently, the shape functions Nn(x)L2(*) 
are spanned over the fictitious domain. Cells completely 
outside of the physical domain are neglected since they do 
not contribute to the solution (4).  
 
 
 
 

Using the factor (x), the coefficients of the matrix eigenvalue problem Bdi=iMdi become: 
 
 
 

Note that the integral is computed on the fictitious domain, although only the physical domain is 
taken into account because of the factor (x).  

Due to the discontinuity in (x), the functions to integrate become discontinuous at 
the boundary of the physical domain. Therefore, special numerical integration 
techniques have to be applied. In the context of this work, the cells cut by the 
boundary of the physical domain are refined in a tree-based manner, and 
Gaussian integration is performed for the sub-cells. The sub-cells cut by the 
boundary of the physical domain are treated specially by taking the physical shape 
of their physical sub-domain into account. 
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EOLE method 
In theEOLE (expansion optimal linear estimation) method the random 
field is discretized using a finite number of points. In a first step, the  
points to discretize the field have to be chosen.  Thereafter, the 
covariance matrix of the random variables i at the chosen points xi  
is computed, ()nm=Cov(xn,xm). In a next step, the eigenvalues i and 
eigenvectors i of the covariance matrix are computed. Only the M  
largest eigenvalues and their corresponding eigenvectors are selected 
for the random field discretization. The EOLE method does not require 
a mesh since the geometry of the domain is considered indirectly through 
the points used to discretize the field.  

The expansion writes: 

where the vector function x(x) is defined as 
(x(x))j=Cov(xj,x), and the i are independent standard 
normal random variables. 

The expansion was set-up such that it minimizes the variance of the truncation error at the 
discretization points subjeted to a zero mean truncation error. 
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