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Abstract

The Transitional Markov Chain Monte Carlo (TMCMC) method is a widely used method for Bayesian updating and Bayesian
model class selection. The method is based on successively sampling from a sequence of distributions that gradually approach the
posterior target distribution. The samples of the intermediate distributions are used to obtain an estimate of the evidence, which
is needed in the context of Bayesian model class selection. We discuss the properties of the TMCMC method and propose the
following three modifications to the TMCMC method: (1) The sample weights should be adjusted after each MCMC step. (2) A
burn-in period in the MCMC sampling step can improve the posterior approximation. (3) The scale of the proposal distribution
of the MCMC algorithm can be selected adaptively to achieve a near-optimal acceptance rate. We compare the performance of
the proposed modifications with the original TMCMC method by means of three example problems. The proposed modifications
reduce the bias in the estimate of the evidence, and improve the convergence behavior of posterior estimates.
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Introduction

Bayesian analysis provides a consistent framework to reduce
uncertainties in existing models through new information. The
uncertainties in the model are expressed by means of input pa-
rameters that are treated as random. New information from
observations or measurements is then used to update our prior
belief about the parameters of the model to a posterior belief.
If the posterior model cannot be derived analytically, samples
from the posterior have to be generated numerically.

Sampling from the posterior distribution is not a straightfor-
ward task because the posterior is typically only know point-
wise in terms of the outcome of a numerical model. Usually,
sampling from the posterior is performed through methods that
are based on Markov Chain Monte Carlo (MCMC) sampling
[12, 11]. Application of MCMC approaches requires aware-
ness of the following issues: First, all methods that employ
MCMC sampling produce dependent samples. Thus, the effi-
ciency of statistical estimators is reduced, compared to crude
Monte Carlo methods that produce independent samples. Sec-
ond, a Markov chain needs to be initialized with a seed. If this
seed is not already a sample from the posterior distribution, the
chain needs a certain number of steps until the produced sam-
ples approximately follow the posterior distribution. The initial
phase until the Markov chain produces samples from the poste-
rior is called burn-in period. In practice, the length of the burn-
in period is difficult to assess. Third, many MCMC techniques
become inefficient when the number of uncertain parameters in
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the Bayesian analysis becomes large, because it is difficult to
set-up a transition density that works well in high dimensions.

The Transitional Markov Chain Monte Carlo (TMCMC)
method, proposed by Ching and Chen (2007), belongs to the
class of sequential particle filter methods [9] and is based on
MCMC sampling. The method tries to overcome the aforemen-
tioned issues of MCMC by gradually pushing the samples from
the prior to the posterior distribution. The method has become
popular in both research and practice: recent contributions in-
clude [25], [15], [17], [13], [2]. In addition to the posterior
samples generated by TMCMC, the method returns an estimate
of the evidence of the Bayesian model class, which is needed
for Bayesian model class selection and Bayesian model averag-
ing [16, 24].

In this contribution, we discuss properties of the TMCMC
method, and on this basis we identify possible improvements.
In particular, we observe that the TMCMC method tends to pro-
duce estimates of the evidence that contain a considerable bias.
Three potential modifications to the TMCMC method are pro-
posed: (1) Adjusting the sample weights after each MCMC step
tends to improve the performance of the method and reduces
the bias in the estimated evidence. (2) A burn-in period in the
MCMC sampling step can improve the posterior approxima-
tion. (3) The scale of the proposal distribution can be adjusted
adaptively such that the MCMC algorithm maintains a specified
near-optimal acceptance rate.

The outline of the paper is as follows: First, we introduce
Bayesian model updating in general and the TMCMC method
in particular. Thereafter, we make a number of observations on
the performance of the TMCMC method and propose modifi-
cations to improve it. Finally, the effects of the proposed modi-
fications are showcased through a comparison with the original

Manuscript, published in Journal of Engineering Mechanics 142(5) (2016) 10.1061/(ASCE)EM.1943-7889.0001066



TMCMC method by means of three numerical examples.

Bayesian model updating

In Bayesian inference, the learning process is formalized
through Bayes’ theorem:

p(θ|d) = cE−1 · L(θ|d) · p(θ) (1)

where θ is the vector of M model parameters that are consid-
ered uncertain in the analysis, and d denotes the new informa-
tion that becomes available in form of measurements or obser-
vations. The probability density function (PDF) p(θ) repre-
sents our prior belief about the distribution of θ, the likelihood
L(θ|d) expresses the plausibility of observing d given a certain
θ, p(θ|d) is the resulting posterior distribution, and cE is a scal-
ing constant defined as:

cE =

∫
d

L(θ|d)p(θ) dθ (2)

The constant cE is a measure for the plausibility of the inves-
tigated model class. In the Bayesian community cE is usually
referred to as the evidence of the model class [4]. In case of
multiple model classes, the evidence allows evaluating the pos-
terior plausibilities of the individual model classes. The plau-
sibilities are required for Bayesian model class selection and
Bayesian model averaging [16, 24]. Therefore, it is advanta-
geous if an estimate of cE is obtained as a by-product of the
method that performs the Bayesian inference.

TMCMC method

The principle behind TMCMC

The TMCMC method [8] belongs to the class of sequential
particle filter methods [9]. The method starts with independent
samples from the prior distribution. In subsequent steps, the
sampling distribution is gradually transformed such that it ap-
proaches the posterior distribution. For this purpose, (Eq. 1) is
modified to:

p j(θ) ∝ p(θ) · L(θ|d)q j (3)

where j = 0, . . . ,m denotes the level, and the q j ∈ [0, 1] are
chosen such that q0 = 0 < q1 < · · · < qm = 1. Consequently,
for j = 0, p0(θ) is equal to the prior distribution p(θ); and for
j = m, pm(x) matches the posterior distribution p(θ|d).

The principle behind the TMCMC method is to gradually
push the samples from the prior distribution to the posterior
distribution. The speed of this gradual transition is controlled
by the coefficients q j. Ching and Chen (2007) proposed to se-
lect q j+1 based on q j such that the coefficient of variation of
L(θ|d)q j+1−q j approximately equals vt, where vt = 100% was
suggested. The value of q j+1 can then be determined based on
the samples of the previous level as:

q j+1 = arg min
q

(∣∣∣CV j(q) − vt
∣∣∣) (4)

where CV j(q) with q ∈ (q j, 1] is the sample coefficient of vari-

ation of the set
{
L(θ( j,k)|d)q−q j

}Ns

k=1
, Ns is the number of samples

generated at each level, θ( j,k) denotes the kth sample at level
j, and L(θ( j,k)|d) is the likelihood value that is associated with
θ( j,k).

The evidence of the stochastic model class cE (Eq. 2) can be
rewritten as follows:

cE =

∫
x

p(θ) ·
m∏

j=1

L(θ|d)q j−q j−1 dθ (5)

=

m∏
j=1

∫
θ

L(θ|d)q j−q j−1 · p j−1(θ) dθ (6)

=

m∏
j=1

Ep j−1(θ)
[
L(θ|d)q j−q j−1

]
(7)

where Ep j−1(θ) [·] denotes the expectation with respect to dis-
tribution p j−1, which can be estimated based on the generated
samples:

Ep j(θ)
[
L(θ|d)q j+1−q j

]
≈

1
Ns

Ns∑
k=1

L(θ( j,k)|d)q j+1−q j (8)

The original TMCMC method proposed by Ching and Chen
(2007)

The TMCMC algorithm can be summarized as follows: For
the initial j = 0, all Ns samples θ(0,1), . . . ,θ(0,Ns) are drawn from
the prior distribution, and j is set to one thereafter. For all j > 0,
Ching and Chen (2007) propose the following scheme:

1. Find q j through solving (Eq. 4). If q j > 1, then set q j = 1.
2. For all samples k = 1, . . . ,Ns compute a weighting coeffi-

cient w( j,k):

w( j,k) =
(
L(θ( j−1,k)|d)

)q j−q j−1
(9)

3. Compute the mean of the weighting coefficients:

S j =
1
Ns

Ns∑
k=1

w( j,k) (10)

4. Compute the covariance matrix of the Gaussian proposal
distribution:

Σ j = β2 ·

Ns∑
k=1

[
w( j,k)

S j · Ns
·
(
θ( j−1,k) − θ j

)
·
(
θ( j−1,k) − θ j

)T
]

(11)
with

θ j =

∑Ns
l=1 w( j,l) · θ( j−1,l)∑Ns

l=1 w( j,l)
(12)

The coefficient β scales the proposal distribution. Ching
and Chen (2007) suggest to set β = 0.2.

5. For each l in {1, . . . ,Ns} set: θc( j,l) = θ( j−1,l). Thereafter,
for k = 1, . . . ,Ns do:
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• Select index l from the set {1, . . . ,Ns} at random,
where each l is assigned probability w( j,l)∑Ns

n=1 w( j,n)
.

• Propose a new sample: draw θc from a Normal dis-
tribution that is centered at θc( j,l) and has covariance
matrix Σ j.

• Generate a sample r from a uniform distribution on
[0, 1].

• If r ≤ p j(θc)
p j(θc( j,l))

then set θc( j,l) = θc, otherwise do noth-
ing.

• Set θ( j,k) = θc( j,l).

6. If q j = 1 then stop the iteration, otherwise set j = j + 1
and continue with 1.

An estimate for the evidence of the assumed model class that
is based on (Eq. 7) is:

ĉE =

m∏
j=1

S j (13)

with S j defined according to (Eq. 10).

Observation 1: sample weights

At each level j in the TMCMC method, samples
{θ( j,1), . . . ,θ( j,Ns)} are generated that (approximately) follow
distribution p j based on samples {θ( j−1,1), . . . ,θ( j−1,Ns)} that fol-
low distribution p j−1. To each sample a weight is attached ac-
cording to (Eq. 9). Instead of performing only a simple resam-
pling step based on the weights, the weighted sampling is com-
bined with a MCMC step: In an iterative process, one randomly
picks a sample according to its weight, uses the selected sample
as seed to perform a MCMC step with stationary distribution p j,
and replaces the randomly picked sample with the sample that
the MCMC step produced. The principle is that the samples
that the MCMC step produced already follow (asymptotically)
the target distribution p j, because the seeds of the MCMC step
are picked according to their importance weights.

If the proposed sample is accepted, the chain moves on.
Therefore, the absolute weight of the current chain should
change. This is not taken into account by the original TMCMC
method. Asymptotically, the samples of the individual Markov
chains that initially follow distribution p j−1 approach the target
distribution p j, and the weights of all chains should asymptot-
ically equalize. However, in practice the intermediate distri-
butions of the transition are difficult to obtain. Therefore, the
original TMCMC method assumes that for the finite number of
samples that are drawn from a single chain, no transition takes
place. Consequently, the absolute weight of a Markov chain can
be updated after each accepted sample by means of (Eq. 9). To
consider the transition to the target distribution when updating
the weights remains an area of future research.

Proposed modification (1):. In the original TMCMC method,
the weights w( j,k) attached to each Markov chain are computed
at the beginning of each TMCMC level (see (Eq. 9)) and then
kept constant. We propose to adapt the weight of a Markov

chain each time the chain moves on. In order to do so, step (5)
in the TMCMC algorithm given above needs to be modified as
follows:

5. For each l in {1, . . . ,Ns} set: θc( j,l) = θ( j−1,l). Thereafter,
for k = 1, . . . ,Ns do:

• . . .

• Set θ( j,k) = θc( j,l).

• Set w( j,l) =
(
L(θc( j,l)|d)

)q j−q j−1

Note that S j and Σ j are computed only once at the beginning of
each level.

As we will demonstrate by means of numerical examples,
this modification considerably reduces the average bias in the
estimate of the evidence. The statistics of the posterior samples
is improved marginally by the modification.

Observation 2: burn-in

In the TMCMC method one uses samples from distribu-
tion p j−1 to generate samples that asymptotically follow distri-
bution p j. The sampling is based on MCMC, where weighted
samples of distribution p j−1 are taken as seeds. The weighted
samples follow distribution p j only asymptotically. Therefore,
the MCMC sampling performed in the TMCMC method does
not possess the property of perfect sampling [7], where perfect
sampling implies that the initial distribution of the seeds equals
the stationary distribution of the Markov chains [19].

For practical applications, this is usually not an issue, as we
will demonstrate in numerical examples. Consequently, the
TMCMC method does not usually require a burn-in period.
However, one should be cautious if TMCMC is used with only a
small number of samples per level: In this case a burn-in period
might actually be required for the Markov chains to converge.

Proposed modification (2):. It is straight-forward to introduce
a burn-in period of length Nb to the MCMC sampling of each
TMCMC level. Again, only step (5) in the TMCMC algorithm
has to be modified:

5. For each l in {1, . . . ,Ns} set: θc( j,l) = θ( j−1,l). Thereafter,
for k = 1, . . . , (Ns + Nb) do:

• . . .

• If r ≤ L(θc |d)
L(θc( j,l) |d) then set θc( j,l) = θc, otherwise do noth-

ing.

• If k > Nb then set θ( j,k−Nb) = θc( j,l), otherwise do
nothing.

• Set w( j,l) =
(
L(θc( j,l)|d)

)q j−q j−1

However, our numerical investigations demonstrate that Nb can
usually be set to zero.
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Observation 3: scaling of the proposal
The optimal value of the constant β that is used to scale the

proposal distribution depends considerably on the problem at
hand. On the one hand, a β that is selected too small leads
to a proposal distribution that accepts many samples; however,
subsequent samples in a Markov chain are close to each other.
Thus, the correlation in the chain is large and the produced sam-
ples will not properly propagate into the relevant domain for
reasonable Ns. On the other hand, a β that is selected too large
leads to many rejected samples and, thus, also results in a large
chain correlation. The larger the correlation in a Markov chain,
the less efficient is the sampling procedure, because the effec-
tive number of independent samples in the chain is reduced and,
thus, the variance of applied estimators is bound to increase.

Setting β = 0.2 as proposed in Ching and Chen (2007) works
well for some problems, but is, in our experience, far from op-
timal for other problems.

Proposed modification (3):. In the original TMCMC algo-
rithm, the proposal distribution is set-up in the space spanned
by θ: The proposal is a multivariate Normal distribution that
is centered at the current state of the Markov chain and whose
variance is defined according to (Eq. 11).

Without loss of generality, we propose to represent the joint
prior PDF of the uncertain parameter vector θ in terms of an
underlying vector u ∈ RM of independent standard Normal ran-
dom variables. If the components of θ are a-priori independent,
then the transformation ui → θi of the ith component of the un-
certain parameter vector is given as: θi = F−1

θi
(Φ(ui)), where

F−1
θi

(·) denotes the inverse CDF of the prior distribution of the
ith component of θ, and Φ(·) denotes the CDF of the standard
Normal distribution. If the components of θ are dependent, the
marginal transformation based on the Nataf model [10] or the
Rosenblatt transformation [14] can be used.

The updating problem is then solved in terms of u. Perform-
ing the Bayesian inference in an underlying standard Normal
space has numerical advantages: (1) The uncertainty in ui is
normalized, whereas the uncertainty in θi is usually not. (2) The
support of θ may be bounded, whereas the support of u is not
bounded.

Based on this, the proposal is then set-up in the space
spanned by u: it is a multivariate Normal distribution that is
centered at the current state of the Markov chain and whose
covariance matrix is defined as the sample covariance in terms
of u (and not in terms of θ). We propose to select the initial
scaling factor β of the thus obtained proposal distribution as:
β = 2.4/

√
M based on [11, 1].

Additionally, the performance of the MCMC algorithm can
be enhanced, by adjusting the scaling factor β adaptively dur-
ing the simulation. Often the scaling factor β is tuned such that
the average acceptance probability of the MCMC algorithm ap-
proaches a specified target acceptance-rate tacr [1, 18]. We sug-
gest to adaptively modify β such that the monitored average
acceptance-rate approaches the following target acceptance-
rate tacr = 0.21/M + 0.23, i.e., tacr = 0.44 for M = 1, tacr = 0.27
for M = 5 and tacr = 0.23 for large M. This rule is based on the
findings published in [20, 21].

The algorithm to adaptively update β is as follows: At the
initial sampling level set β(old) = 2.4/

√
M; in all other levels

use the last value of β(old) from the previous sampling level.
At the beginning of each sampling level, set Nadapt = 1. Per-
form Na MCMC steps. Thereafter, evaluate the coefficient ca =

(pacr − tacr) /
√

Nadapt, where pacr is the mean acceptance-rate of
the last Na MCMC steps (i.e., the number of accepted sam-
ples divided by Na), and tacr denotes the target acceptance-rate.
Modify β based on the value of ca: set β(new) = β(old) · exp(ca).
Increase the value of Nadapt by one, set β(old) = β(new), perform
another Na MCMC steps and evaluate ca again. Repeat this un-
til the required number of samples is generated. We suggest to
set Na = 100.

Note: In principle, the algorithm to choose the scaling fac-
tor β adaptively works also if the problem is solved directly in
the space spanned by θ. However, for the following reasons, we
expect a reduced efficiency in this case: On the one hand, work-
ing in the underlying u-space facilitates the choice of an initial
scaling factor that leads to a robust behavior of the algorithm
for a large variety of problems. Moreover, if the support of θ is
bounded and a Normal proposal distribution is used, some pro-
posed samples have to be rejected simply because the proposed
sample is not within the support of θ. On the other hand, solv-
ing the updating problem in terms of u adds an additional layer
of complexity.

Numerical Investigations

In the following we compare the proposed modifications of
the TMCMC method with the original TMCMC method. We
term the method that takes the first two proposed modifica-
tions into account weight-adjusted TMCMC (wTMCMC), and
the method that takes the first and the third proposed modifica-
tion into account improved TMCMC (iTMCMC). The burn-in
length Nb is set to zero in iTMCMC.

The comparison is performed by means of three example
problems for Bayesian updating: a dynamic system with two
degrees of freedom, an analytical example with a bimodal
likelihood function, and an example where the likelihood is
expressed in terms of the sum of Normal random variables.
Within a single updating run we generate 103 posterior sam-
ples, i.e. Ns = 103. By repeatedly solving the updating problem
several times, we evaluate the mean and standard deviation of
the estimated evidence (denoted acE and scE ), and the posterior
mean and standard deviation of estimate g (denoted ag and sg),
where g is defined as:

E
[
g(θ)|d

]
≈

1
Ns

Ns∑
k=1

g(θ(m,k)) = g (14)

The scalar quantity g(θ) acts as a placeholder for the quantity
of interest in a particular example; its meaning will be specified
for each example separately. The estimated posterior mean and
standard deviation of quantity g is denoted ag and sg, respec-
tively.
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Figure 1: 2DOF system investigated as first example problem.

If the generated posterior samples were independent, one
could write Var

[
g
]

= s2
g = 1

Ns
· σ2

g, where σg is the true pos-
terior standard deviation of scalar quantity g(θ). However, the
posterior samples are dependent, since they are generated by
means of MCMC sampling. More specifically, the samples ex-
hibit a positive dependence structure, which means Var

[
g
]

=

s2
g >

1
Ns
· σ2

g. An effective number of independent samples Neff

can be introduced such that s2
g = 1

Neff
· σ2

g; i.e., on average, we
could obtain the same Var

[
g
]

(that we estimated using the Ns
dependent posterior samples) if we have Neff truly independent
posterior samples at hand, with Neff = σ2

g/s2
g and Neff ≤ Ns.

The total number of model calls required to generate Ns poste-
rior samples is denoted as NM, where NM = (m+1) ·Ns +m ·Nb,
with m being the number of intermediate levels, and Nb is the
length of the burn-in period.

In order to investigate the bias in the estimate of the evidence,
we compute

biascE =
|acE − cE|

cE
(15)

where acE is the average of the evidence estimated by TMCMC,
and cE denotes the true evidence of the problem at hand. The
overall quality of the estimate of the evidence is assessed by
means of:

κcE =

√(
biascE

)2
+

(
scE

acE

)2

(16)

where scE is the standard deviation of the estimated evidence.
The measure κcE considers the variability in the estimated ev-
idence additional to the bias. κcE can only be zero if the es-
timated evidence is always the true evidence. The bias in the
estimated posterior mean and standard deviation is defined as
biasag = ag/E[g]− 1 and biassg = sg/

√
Var[g]− 1, respectively.

Example problem 1: 2DOF dynamic problem

As a first example problem, we investigate the 2DOF sys-
tem presented in the original TMCMC paper [8, Example 1,
Case I]: The response of the two-story linear structure shown
in Fig. 1 to a narrow banded ground acceleration is investi-
gated. The ground acceleration and the acceleration of the roof
are measured every 0.02 seconds for a period of one second.
We assume that perfect measurements of the ground accelera-
tion are available, however, the measurements of the roof ac-
celeration are contaminated with white Gaussian noise. The
variance of the noise σ2

noise, the stiffness parameters k1, k2, and
the damping ratio ξ of the two modes (we assume that the two

modes have the same damping ratio) are assumed uncertain,
i.e., θ = [σ2

noise, k1, k2, ξ]. The aim of the analysis is to up-
date the belief about the uncertain parameters conditioned on
the measurements. The prior distribution is: k1, k2 are uni-
formly distributed on the interval [0, 3000], ξ is uniform on
[0.01, 0.05], and σ2

noise is equally likely between [0, 1]. The true
parameter values used to generate the measured roof accelera-
tion are: k1 = k2 = 1000, ξ = 0.03, σ2

noise = 0.2. The masses
are assumed known: m1 = m2 = 1. For this example problem,
we focus on the posterior statistics of k1, i.e. g(θ) = k1.

A reference solution for the problem at hand was obtained
by means of rejection sampling [22, 11, 5, 23]. In order to ob-
tain a fairly accurate reference solution, we repeat the procedure
of generating 1000 (truly independent) posterior samples more
than 7 ·104 times (after that the statistical uncertainty in the esti-
mates is negligible for our purpose). The so-obtained reference
values are: the evidence is cE,ref ≈ 2.817 · 10−16, the posterior
mean of k1 is µ′′k1,ref ≈ 1367, the posterior standard deviation of
k1 is σ′′k1,ref ≈ 610.

Example problem 2: bimodal likelihood

As second example problem, we investigate case VII of the
second example discussed in [8]: It is a problem with six
random variables, where the prior PDF of each random vari-
able is uniform over the interval [−2, 2]. The likelihood is
a mixture of two multivariate Gaussian distributions centered
at [0.5, . . . , 0.5] and [−0.5, . . . ,−0.5] with a diagonal covari-
ance matrix and standard deviation 0.1; i.e., the likelihood
function of this problem is bimodal. Due to the small stan-
dard deviation, the two modes are effectively disconnected [8].
θ1, . . . , θ6 denote the six stochastic variables of the problem.
In this example problem we focus on the posterior statistics of
θmax = max(θ1, . . . , θ6), i.e., g(θ) = θmax.

The probability that a sample from the likelihood is out-
side of the bounds of the prior distribution is approximately
2.2 · 10−50. As such an event is negligible, the problem at hand
can be solved analytically: cE = 1

46 = 2.44 · 10−4, the posterior
mean of θmax is µ′′θmax

= 0.127 and the posterior standard devia-
tion of θmax is σ′′θmax

= 0.504. The posterior mean and standard
deviation of the parameters θi are 0.0 and 0.510.

Example problem 3: sum of Normal random variables

Let θ be a M-dimensional random vector. The prior distri-
bution of θ is f (θ) =

∏M
i=1 ϕ(θi), where ϕ denotes the PDF

of the univariate standard Normal distribution. We introduce a
function h(θ) defined as h(θ) = 1

√
M

∑M
i=1 θi. Note that the prior

distribution of h(θ) is standard Normal. The likelihood func-
tion of the problem is defined through h(θ) as L(θ|µε , σε) =
1
σε
· ϕ

(
h(θ)−µε
σε

)
, where µε = 4 and σε = 0.2. We are partic-

ularly interested in the posterior statistics of h(θ), thus we set
g(θ) = h(θ).

The problem at hand has an analytical solution: The evidence
cE does not depend on the dimension M of the problem and can

be evaluated as cE = 1√
1+(σε )2

· ϕ

(
µε√

1+(σε )2

)
= 1.785 · 10−4.

The posterior mean and standard deviation of h(θ) are µ′′h =
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Table 1: Performance of different TMCMC variants (study 1 & study 3) for the
bias in the evidence biascE , κcE and the effective number of independent samples
Neff ; averaged over 104 updating runs with 103 posterior samples in each run.

quantities original
investigated TMCMC TMCMC(βopt) iTMCMC

Example 1
biascE 0.16 0.17 2 · 10−4

κcE 0.33 0.32 0.34
Neff 11.7 13.7 9.8

biasag 7 · 10−3 6 · 10−3 8 · 10−3

biassg 0.02 0.01 0.02
Example 2

biascE 0.14 0.42 0.34
κcE 2.2 0.89 4.2
Neff 1.8 3.3 2.9

biasag 0.03 0.04 0.03
biassg 0.01 1 · 10−3 1 · 10−3

Example 3 (M = 6)
biascE 0.25 0.45 0.11
κcE 1.9 0.82 0.59
Neff 1.4 58 70

biasag 0.05 6 · 10−3 3 · 10−3

biassg 0.17 0.02 6 · 10−3

Example 3 (M = 100)
biascE 0.57 0.62 0.63
κcE 2.8 2.6 2.6
Neff 0.6 0.9 1.0

biasag 0.12 0.09 0.09
biassg 0.39 0.30 0.27

µε
(σε )2+1 = 3.846 and σ′′h =

√
1/

(
1 + 1

(σε )2

)
= 0.196, respec-

tively. Note that both the prior and posterior of h(θ) do not
depend on the dimension M.

Study 1: Optimal spread of the proposal

In the original TMCMC method, the spread of the proposal
distribution is fixed to β = 0.2. Depending on the problem at
hand, this spread can be far from optimal. For this reason, we
define an optimal spread βopt of the proposal distribution as the
β for which the effective number of independent samples Neff

becomes maximal. Thereby, the spread is kept constant in all
TMCMC levels. An expensive parameter study is performed
to determine the optimal spread βopt associated with each of
the example problems. The optimal spread is approximately
0.3 in Example problem 1, 0.4 in Example problem 2, and
1.3 − 0.18 · ln (M) in Example problem 3 for M ∈ {6, . . . , 100}.
Note that βopt is with respect to a proposal distribution formu-
lated in the underlying standard Normal space (see proposed
modification (3)), whereas the proposal distribution of the orig-
inal TMCMC method is expressed in the space spanned by the
parameter vector θ, hence they are not directly comparable (ex-
cept in case of Example problem 3).

The performances of the original TMCMC method and the
TMCMC variant with the optimal spread βopt are listed in the

first two columns of Table 1. For each example problem, the
quantities biascE , κcE , Neff , biasag and biassg are listed for 103

generated posterior samples and 103 samples per level. Re-
member that the optimal spread βopt was selected such that
Neff is maximized. Consequently, TMCMC(βopt) clearly out-
performs the original TMCMC method with respect to Neff .
TMCMC(βopt) performs also better than the original TMCMC
method in terms of κcE . For the average bias of the estimated
evidence biascE , the original TMCMC(βopt) method gives a
smaller bias. The bias in the estimated posterior mean and stan-
dard deviation is very small for both methods and the first two
example problems. For the third example problem and different
M, the bias in the estimated posterior mean and standard devia-
tion is considerable in both methods. The performance in terms
of this example will be investigated in more detail in study 4.

Note that for real problems an optimal spread βopt cannot be
determined, since the involved computational burden is much
larger than potential advantages.

Study 2: comparison of TMCMC and wTMCMC

In this study, the TMCMC variant that modifies the sample
weights (wTMCMC) is compared to the variant that does not
change the weights during the MCMC sampling. We fix the
spread of the proposal distribution to βopt, defined in the previ-
ous study. Note that βopt is determined for TMCMC (i) without
a burn-in phase, (ii) for fixed sample weights, and (iii) with
a proposal distribution formulated in the underlying standard
Normal space.

The comparison of wTMCMC and TMCMC(βopt) is done for
different Ns (the number of posterior samples generated) and Nb
(the length of the burn-in period). The number of samples in
the intermediate TMCMC-levels is set equal to Ns. In this and
all following studies, the results are averaged over 104 runs of
the updating problem. This number is chosen because it is still
computationally feasible and reduces the noise in the presented
plots to a tolerable level. In the plots presented as part of this
study, the total number NM of model calls needed to solve the
updating problem for given Ns and Nb is indicated. We discuss
the performance of both methods with respect to a fixed number
of model calls NM: first we look at the quality of the evidence,
and thereafter we assess the quality of the posterior samples.

Fig. 2 illustrates the average bias in the estimated evidence,
defined according to (Eq. 15). The proposed changes (wTM-
CMC) reduce the average bias in the estimated evidence consid-
erably for all investigated example problems. For wTMCMC,
the bias is mainly controlled by the generated number of poste-
rior samples Ns, and only slightly by the length of the burn-in
period Nb. For both wTMCMC and TMCMC(βopt), the small-
est bias for a given total number of model calls NM is obtained
using no burn-in, i.e., setting Nb = 0. In Example problem 2,
TMCMC(βopt) method gives zero bias for Ns ≈ 100 and Nb = 0.
However, this is only conditional, because the evidence is esti-
mated too large for Ns < 100 and too small for Ns > 100. Look-
ing at the results of the third example problem for M = 6 and
M = 100 indicates that the bias increases with the dimension of
the problem.
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(a) Ex.1: wTMCMC
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(b) Ex.1: TMCMC(βopt)
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(c) Ex.2: wTMCMC
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(d) Ex.2: TMCMC(βopt)
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(e) Ex.3 (M = 6): wTMCMC
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(f) Ex.3 (M = 6): TMCMC(βopt)
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(g) Ex.3 (M = 100): wTMCMC
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(h) Ex.3 (M = 100): TMCMC(βopt)

Figure 2: Comparison of wTMCMC and TMCMC(βopt) (study 2): bias in the evidence (biascE )

7



200 400 600 800 1000
Ns: samples per level

0

100

200

300

400

500

600

700

N
b
:

bu
rn

-in
pe

rio
d

1.5e+03
3.0e+03

4.5e+03

6.0e+03
7.5e+03

NM: total model calls

0.0

0.2

0.4

0.6

0.8

1.0

κ
c E

(a) Ex.1: wTMCMC
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(b) Ex.1: TMCMC(βopt)
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(c) Ex.2: wTMCMC
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(d) Ex.2: TMCMC(βopt)
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(e) Ex.3 (M = 6): wTMCMC
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(f) Ex.3 (M = 6): TMCMC(βopt)
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(g) Ex.3 (M = 100): wTMCMC
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Figure 3: Comparison of wTMCMC and TMCMC(βopt) (study 2): κcE
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(a) Ex.1: wTMCMC
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(b) Ex.1: TMCMC(βopt)
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(c) Ex.2: wTMCMC
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(d) Ex.2: TMCMC(βopt)
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(e) Ex.3 (M = 6): wTMCMC
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(f) Ex.3 (M = 6): TMCMC(βopt)
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(g) Ex.3 (M = 100): wTMCMC
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(h) Ex.3 (M = 100): TMCMC(βopt)

Figure 4: Comparison of TMCMC(βopt) and wTMCMC (study 2): effective number of independent samples Neff .
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The average variability of the estimated evidence, see
(Eq. 16), is presented in Fig. 3. This measure assesses the
overall quality of the estimated evidence, as κcE becomes zero
only if both the average bias and the variability of the esti-
mated evidence become zero. κcE depends on both Ns and Nb
for the investigated examples. In this case, a burn-in period
can marginally improve κcE (for a fixed number of total model
calls NM) – in particular for Example problem 3 and M = 6.
However, in practice it is not clear which burn-in period is best
for the problem at hand: Therefore, a zero burn-in period can
be considered a near-optimal solution. Again, wTMCMC per-
forms better than TMCMC(βopt) for the investigated examples.
The third example problem demonstrates that an increase of the
dimension M leads to larger κcE , for both TMCMC(βopt) and
wTMCMC.

A study assessing the quality of the estimated posterior mean
and standard deviation was performed. The corresponding
plots, however, are not shown because they add little to this
contribution: With the exception of Example problem 3 and
M = 100, we observe the average bias in the estimated mean
and standard deviation of the posterior samples to be small for
both methods. (as Table 1 already indicates). For reasonable
sample sizes (i.e. Ns > 200), the bias of both quantities was
observed to be smaller than 5%, where wTMCMC performed
slightly better than TMCMC(βopt). A notable exception is Ex-
ample problem 3 with M = 100: In this case a significant bias
is observed for both TMCMC(βopt) and wTMCMC. The perfor-
mance of TMCMC for increasing M in Example problem 3 is
investigated separately in study 4.

Fig. 4 depicts the average effective number of independent
posterior samples Neff . For the same Ns and Nb, wTMCMC
produces a larger effective number of independent samples than
TMCMC(βopt). In terms of Neff , a zero burn-in period is no
longer optimal for all example problems (if the number of total
model calls NM is fixed): For the first example problem and the
third example problem with M = 100, a zero burn-in period is
optimal. For the second example problem and the third example
problem with M = 6, a burn-in period that is approximately as
long as Ns produces the largest Neff for a fixed number of total
model calls NM.

To summarize the findings of this study: wTMCMC is
observed to outperform TMCMC(βopt), and shows a more
consistent convergence behavior in terms of Ns and Nb than
TMCMC(βopt). A zero burn-in period is found to be optimal
for biascE and near-optimal for κcE , with respect to a fixed num-
ber of total model calls NM. However, a zero burn-in period
is not optimal in all cases with respect to Neff . As there is no
efficient technique to detect an optimal or near-optimal burn-in
length for real problems, using a zero burn-in period is consid-
ered justifiable.

Study 3: Performance of iTMCMC
The performance of iTMCMC is compared to the original

TMCMC method and to TMCMC(βopt). The results are listed
in Table 1. Looking at the bias of the estimated evidence biascE ,
iTMCMC outperforms TMCMC(βopt); iTMCMC performs bet-
ter than the original TMCMC method except for Example prob-

lem 2. For Example problem 3 with M = 100 all three methods
perform similarly bad. Regarding the performance of the in-
vestigated methods with respect to κcE , a clear tendency cannot
be seen. The performance regarding the effective number of
independent samples clearly depends on the problem at hand.
For Example problem 1, iTMCMC is the least efficient among
the three investigated TMCMC variants; whereas for Example
problem 3 with M = 6, iTMCMC clearly excels. With respect
to the bias in the estimated posterior mean and standard devi-
ation, iTMCMC and TMCMC(βopt) perform similarly, and for
Example problem 3 both methods perform better than the orig-
inal TMCMC method.

In summary: Compared to the original TMCMC method,
iTMCMC produces evidence estimates that have on average a
smaller bias. By comparing κcE with biascE , we conclude that
variability of the evidence estimator increased, while its bias
decreased. On average, iTMCMC tends to generate a larger ef-
fective number of independent posterior samples and posterior
samples with a smaller bias in the mean and standard devia-
tion than the original TMCMC variant. The variant with the
optimal spread, TMCMC(βopt), is not an option for practical
application, because an optimal spread cannot be found with
reasonable computational effort.

Study 4: performance in high dimensions

The performance of iTMCMC and the original TMCMC
method for an increasing number of uncertain variables M is
investigated by means of Example problem 3. The results are
depicted in Fig. 5: the average bias in the evidence biascE , the
effective number of independent samples Neff , the bias in the
estimate of the posterior mean biasag and standard deviation
biassg is shown in sub-plots (a), (b), (c) and (d), respectively.
In a nutshell, the performance of the two methods in terms of
the monitored quantities decreases considerably with increasing
number of uncertain variables M of the problem. For the inves-
tigated Example problem 3, the analytical solution of the infer-
ence problem does not depend on the dimension M. Therefore,
the loss of efficiency with increasing dimension is attributed to
the nature of the TMCMC methods. Consequently, care should
be taken if a TMCMC method is applied to problems with a
large number of uncertain variables. For the example problem
at hand, iTMCMC outperforms the original TMCMC method
in terms of the bias in the mean and standard deviation and in
terms of the effective number of samples. With respect to the
bias in the evidence, no clear difference can be observed; for
small M iTMCMC is better, and for larger M the original vari-
ant is slightly better.

The loss of efficiency in high dimensions has to be attributed
mainly to the particular proposal distribution used in TMCMC:
it is a multivariate Gaussian distribution with covariance matrix
based on the estimated sample covariance. For the multivariate
Gaussian proposal distribution, the acceptance/rejection ratio of
the Metropolis-Hastings algorithm approaches zero [3] as the
dimensionality of the problem increases, rendering the MCMC
sampling inefficient. Hybrid proposal distributions can improve
the performance of TMCMC in high dimensions, see e.g. [6, 2].
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Figure 5: Performance for an increasing dimension M in Example problem 3. (study 4)

Summary and Conclusion

The paper proposes three modifications to the algorithm of
the original TMCMC method: (1) the TMCMC weights should
be adjusted after each MCMC step, (2) a burn-in period may be
included for some problems, as the MCMC sampling in TM-
CMC is only asymptotically perfect, (3) the scaling of the pro-
posal distribution can be adjusted adaptively such that a spec-
ified target acceptance rate is maintained in the MCMC sam-
pling procedure.

We demonstrated by means of three example problems that:
(1) The first proposed modification leads to a better and more
consistent convergence behavior (study 2). Especially for
Bayesian model class selection, the bias of the estimate of the
model evidence is reduced by adjusting the TMCMC weights.
(2) In most cases, using additional samples is more effective
than using a burn-in phase (study 2); especially as a optimal
burn-in length depends on the problem at hand and is diffi-
cult to find. (3) For the third proposed modification, adjust-
ing the spread of the proposal distribution adaptively simplifies
the practical application of the method; on average the perfor-
mance of the method was observed to increase compared to the
original TMCMC method (study 3). (4) TMCMC works well
for problems with few uncertain parameters. However, if the
number of uncertain parameters is large, the results can be con-
siderably biased and Neff is very small (study 4).
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