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Abstract

The computational efficiency of random field representations with the Karhunen–Loève (KL) expansion relies on the solution of
a Fredholm integral eigenvalue problem. This contribution compares different methods that solve this problem. Focus is put on
methods that apply to arbitrary shaped domains and arbitrary autocovariance functions. These include the Nyström method as well
as collocation and Galerkin projection methods. Among the Galerkin methods, we investigate the finite element method (FEM)
and propose the application of the finite cell method (FCM). This method is based on an extension to the FEM but avoids mesh
generation on domains of complex geometric shape. The FCM was originally presented in Parvizian et al. (2007) [17] for the
solution of elliptic boundary value problems. As an alternative to the L2-projection of the covariance function used in the Galerkin
method, H1/2-projection and discrete projection are investigated. It is shown that the expansion optimal linear estimation (EOLE)
method proposed in Li and Der Kiureghian (1993) [18] constitutes a special case of the Nyström method. It is found that the
EOLE method is most efficient for the numerical solution of the KL expansion. The FEM and the FCM are more efficient than the
EOLE method in evaluating a realization of the random field and, therefore, are suitable for problems in which the time spent in the
evaluation of random field realizations has a major contribution to the overall runtime – e.g. in finite element reliability analysis.

Keywords: random field discretization, Karhunen–Loève expansion, Nyström method, collocation method, Galerkin method,
finite cell method

1. Introduction

Many engineering problems require the modeling of uncer-
tain input parameters with inherent spatial variability. These
include soil parameters and groundwater heights in geotechni-
cal engineering, wind loads and snow loads in structural en-
gineering, and the amount of precipitation and evaporation in
hydrology. This type of uncertainty is modeled by means of
random fields. A random field represents a random quantity at
each point of a continuous domain, and, thus, consists of an infi-
nite number of random variables. For computational purposes,
the random field has to be expressed using a finite number of
random variables. This step is referred to as random field dis-
cretization.

Various methods for random field discretization have been
published in literature. A comprehensive overview of random
field discretization methods is given in [1]. The efficiency of a
method for random field discretization depends on its ability to
approximate the original random field accurately with a mini-
mum number of random variables. Accuracy is to be defined
with respect to a certain error measure such as the mean square
error.
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Series expansion methods approximate the random field by a
finite sum of products of deterministic spatial functions and ran-
dom variables. The Karhunen–Loève (KL) expansion is opti-
mal among series expansion methods in the global mean square
error with respect to the number of random variables in the rep-
resentation [2]. Consequently, it has received much attention in
literature. The KL expansion was introduced in the engineer-
ing community by Spanos and Ghanem [3]. The expansion re-
quires the solution of a Fredholm integral eigenvalue problem
(IEVP), whose integral kernel is the autocovariance function
of the field. Analytical solutions of the IEVP can be obtained
only for specific types of autocovariance functions defined on
rectangular domains. For random fields with arbitrary autoco-
variance functions defined on domains of complex geometrical
shape, the solution of the IEVP needs to be approximated nu-
merically. An overview of the numerical solution of Fredholm
integral equations is given in [4].

For the numerical approximation of the KL expansion, ap-
proaches that are based on the Galerkin method are used most
often in literature. On one-dimensional domains, the Galerkin
scheme is often applied in a spectral sense, i.e., the basis func-
tions are spanned over the entire domain. The convergence
behavior of this approach is investigated in [5] for stationary
and non-stationary problems and different covariance functions
using polynomials with a degree up to ten as basis functions.
Gutierrez et al. [6] compares the Legendre polynomials with
trigonometric basis functions. The wavelet-Galerkin method
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is an alternative Galerkin approach. It is applied in [7, 8, 9]
for the discretization of the IEVP on one-dimensional domains.
For random fields defined on two- and three-dimensional do-
mains, the finite element method (FEM) is often used for the
discretization of the IEVP. The use of the FEM for the approx-
imate solution of the KL expansion was suggested by Ghanem
and Spanos [2]. The FEM is a Galerkin approach that requires
a spatial discretization of the domain, typically called finite el-
ement mesh. The method can cope with domains of arbitrary
geometric shape. The convergence behavior of the FEM was in-
vestigated by Papaioannou [10] for two-dimensional domains.
For the computation of the matrix eigenvalue problem in the
FEM, a generalized fast multi-pole Krylov eigen-solver is used
in [11, 12]. On two- and especially three-dimensional random
field domains, the computational costs of setting up the matrix
eigenvalue problem and obtaining its solution become expen-
sive. This problem was tackled in [13, 14] by application of
H-matrices [15] for the decomposition of the covariance ma-
trix. If the domain has a complex geometric shape, the gen-
eration of a finite element mesh is an involved task and can
be time consuming. Therefore, approaches that avoid mesh
generation might be preferred. Papaioannou [10] proposed a
spectral Galerkin approach that deals with geometrically com-
plex domains by embedding the actual domain in a domain of
simple geometric shape and using the latter to solve the IEVP.
Furthermore, a Galerkin approach employing meshless basis
functions is proposed in [16]. Besides the Galerkin approach,
the Nyström method [4] is an alternative technique for the dis-
cretization of the IEVP that also avoids mesh generation. In
this method, the domain is represented by a set of points as-
sociated with weighting factors. In addition to the Galerkin ap-
proach and the Nyström method, the collocation method should
be mentioned. This method is investigated in [6] for a one-
dimensional domain.

This paper reviews different methods for the numerical solu-
tion of the IEVP in the KL expansion. Focus is put on methods
that can cope with random field domains of arbitrary geometric
shape and that do not require the autocovariance function to be
isotropic or homogeneous. These include the Nyström method,
collocation and Galerkin methods. For the Galerkin methods
we focus on the FEM and propose the application of the finite
cell method (FCM). In the FCM [17], the actual domain is em-
bedded in a domain of simple geometric shape and the mesh
is generated on the simple geometry. Higher-order basis func-
tions ensure a fast rate of convergence of the approach. We
present the principles of the FCM for the solution of the IEVP
and discuss its implementation. Furthermore, we show that if
equal weights are used in the Nyström method, the derived ap-
proximate KL expansion is equivalent to the expansion optimal
linear estimation (EOLE) method, which is a series expansion
method for discretization of random fields, proposed in [18].

The remainder of the paper is organized as follows: In Sec-
tion 2, the KL expansion is presented along with its fundamen-
tal properties. The numerical solution of the IEVP is discussed
in Section 3. Special emphasis is given to the description of the
FCM and the treatment of the arising discontinuous integrands.
Section 4 is devoted to numerical examples. In this section,

the considered methods are compared with respect to their nu-
merical efficiency. The efficiency is measured in terms of the
computational efforts required to obtain a random field approx-
imation, and in terms of the computational costs involved in the
evaluation of a realization of the random field. The paper closes
with the concluding remarks in Section 5.

2. Karhunen–Loève expansion

2.1. Definition of random fields

A continuous random field H(x, θ) may be loosely defined
as a random function that describes a random quantity at each
point x ∈ Ω of a continuous domain Ω ⊂ Rd, d ∈ N>0. θ ∈ Θ

is a coordinate in the sample space Θ, and (Θ, F, P) is a com-
plete probability space. If the random quantity attached to each
point x is a random variable, the random field is said to be
univariate or real-valued. If the random quantity is a random
vector, the field is called multivariate. The dimension d of a
random field is the dimension of its topological space Ω. One
usually distinguishes between a one- and a multidimensional
random field.

The field is said to be Gaussian if the distribu-
tion of (H(x1, θ), . . . ,H(xn, θ)) is jointly Gaussian for any
(x1, . . . , xn) ∈ Ω and any n ∈ N>0. A Gaussian field is com-
pletely defined by its mean function µ : Ω → R and auto-
covariance function Cov : Ω × Ω → R. The autocovariance
function can be expressed as Cov (x, x′) = σ(x) ·σ(x′) ·ρ (x, x′),
where σ : Ω → R is the standard deviation function of the
random field and ρ : Ω × Ω → [−1, 1] is its autocorrelation
coefficient function.

The discussion in this work is restricted to univariate multidi-
mensional random fields. We focus on Gaussian random fields
and discuss a special case of non-Gaussian fields that can be
expressed as functions of Gaussian fields.

2.2. Error measures for random field discretization

The approximation Ĥ(·) of a continuous random field H(·) by
a finite set of random variables {χi, i = 1, . . . ,M} with M ∈ N>0
is referred to as random field discretization. The approximation
error εH(x, θ) is defined as the difference between the original
field and its approximation, i.e., εH(x, θ) = H(x, θ) − Ĥ(x, θ).
The expectation of the squared approximation error is called
the mean square error. Integration of the mean square error
over the domain Ω gives the global mean square error [2]:

ε2
H =

∫
Ω

E
[
(εH(x, θ))2

]
dx (1)

An alternative error measure for random field discretization
is the normalized variance of the approximation error, denoted
εσ(x) [18]:

εσ(x) =
Var

[
H(x, θ) − Ĥ(x, θ)

]
Var [H(x, θ)]

(2)
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εσ(x) is called error variance in literature. The corresponding
global error measure, namely the mean error variance, is de-
fined as the weighted integral [1]:

εσ =
1
|Ω|

∫
Ω

εσ(x) dx (3)

where |Ω| =
∫

Ω
dx. Another global error measure is the supre-

mum norm of the error variance [18]: ε̂σ = supx∈Ω |εσ(x)|. It re-
flects the maximum point-wise error in the domain. Global er-
ror measures are applied to compare random field discretization
methods and to quantify the overall quality of a random field
approximation. It was noted in [18, 19] that different global er-
ror measures might favor different discretization methods. In
this paper we consider only global error measures that aver-
age point-error measures over the domain. However, for some
fields of application, global error measures that are based on the
supremum norm might be of relevance as well.

It is convenient to assume that the mean of the random field
can be represented exactly. In this case, the expectation of the
approximation error is zero, and the expectation of the squared
approximation error is equivalent to the variance of the ap-
proximation error, i.e., E

[
(εH(x, θ))2

]
= Var [εH(x, θ)]. Con-

sequently, the error variance is proportional to the mean square
error. If the standard deviation of the field is constant on the
domain Ω, i.e., σ = σ(x)∀ x ∈ Ω, the global mean square error
can be expressed in terms of the mean error variance as:

ε2
H = |Ω| · σ2 · εσ (4)

2.3. KL expansion of random fields
The Karhunen–Loève expansion is a series expansion

method for the representation of the random field. The expan-
sion is based on a spectral decomposition of the autocovariance
function of the field. It states that a second-order random field
can be represented exactly by the following expansion [20, 21]:

H(x, θ) = µ(x) +

∞∑
i=1

√
λi ϕi(x) ξi(θ) (5)

where µ(x) is the mean function of the field, ξi(θ) : Θ → R
are standard uncorrelated random variables, and λi ∈ [0,∞),
ϕi : Ω → R are the eigenvalues and eigenfunctions of the
autocovariance kernel obtained from solving the homogeneous
Fredholm integral equation of the second kind:∫

Ω

Cov(x, x′)ϕi(x′) dx′ = λiϕi(x) (6)

In this context, the autocovariance function Cov(x, x′) is also
referred to as kernel function. Any valid covariance function
is a bounded, symmetric and positive semi-definite kernel [22].
Moreover, a continuous kernel function is assumed. Note that
the kernel does not have to be stationary. According to Mer-
cer’s theorem, the eigenvalues λi are nonnegative, the eigen-
functions corresponding to positive eigenvalues are continuous
and orthogonal to each other, and the kernel function can be
written as the uniformly convergent expansion Cov(x, x′) =

∑∞
i=1 λi ϕi(x)ϕi(x′), where the eigenfunctions in the expression

are normalized. Consequently, the eigenfunctions must be or-
thonormal to each other, i.e.,

∫
Ω
ϕi(x)ϕ j(x) dx = δi j, where δi j

is one if i = j and zero otherwise. Moreover, they form a com-
plete basis of the space L2(Ω) of square integrable functions on
Ω.

If the random field H(x, θ) is Gaussian, then ξi(θ) are inde-
pendent standard normal random variables [2]. In any other
case, the joint distribution of ξi(θ) is almost impossible to ob-
tain. Hence, the KL expansion is mainly applicable to the dis-
cretization of Gaussian fields.

The direct modeling of non-Gaussian random fields by
means of the KL expansion was discussed by Phoon et al. [23].
The authors proposed an iterative framework to simulate non-
stationary non-Gaussian processes. The procedure was refined
in [24] for highly skewed non-Gaussian processes. Moreover,
non-Gaussian fields are commonly modeled by combining the
KL expansion with the polynomial chaos expansion. Ghanem
[25] proposed a general framework in which the non-Gaussian
field is projected onto an orthogonal polynomial basis with ar-
gument an underlying Gaussian field that is then discretized by
the KL expansion. Matthies and Keese [26] proposed to per-
form the KL expansion of the non-Gaussian field and project
the random variables involved in the expansion to an underlying
independent Gaussian random variable space. In Section 2.5,
we discuss the treatment of a special case of non-Gaussian ran-
dom fields within the context of the KL expansion.

2.4. Truncated KL expansion
The KL expansion can be approximated by sorting the eigen-

values λi and the corresponding eigenfunctions ϕi(x) in a de-
scending order and truncating the expansion after M terms:

H̃(x, θ) = µ(x) +

M∑
i=1

√
λi ϕi(x) ξi(θ) (7)

For fixed M, the resulting random field approximation H̃(x, θ)
is optimal among series expansion methods with respect to the
global mean square error (Eq. (1)) [2]. The variance of H̃(x, θ)
is given as

Var
[
H̃(x, θ)

]
=

M∑
i=1

λi ϕ
2
i (x) (8)

In case of the truncated KL expansion, the error variance in-
troduced in Eq. (2) can be expressed as [1]:

εσ,KL(x) = 1 −
∑M

i=1 λi ϕ
2
i (x)

σ2(x)
(9)

wherein the numerator in the fraction represents the variance of
the truncated field. Eq. (9) can be derived by expressing H(x, θ)
by its KL expansion and using the orthonormality of the ran-
dom variables ξi. From Eq. (9) it can be deduced that the trun-
cated KL expansion always underestimates the true variability
of the original random field. This property of the KL expan-
sion was also discussed in [1]. Moreover, as pointed out in [9],
the truncated KL expansion of homogeneous random fields is
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only approximately homogeneous, since the standard deviation
function of the truncated field will always vary in space. The
mean error variance is given as:

εσ,KL = 1 −
1
|Ω|

M∑
i=1

λi

∫
Ω

ϕ2
i (x)

σ2(x)
dx (10)

The equation of the mean square error can be transformed to
E

[
(εH(x, θ))2

]
= σ2(x)−

∑M
i=1 λi ϕ

2
i (x) using the orthonormality

of the random variables ξi. The global mean square error reads
[1]:

ε2
H,KL =

∫
Ω

σ2(x) dx −
M∑

i=1

λi (11)

If the standard deviation of the field is constant, the equation
for the mean error variance, Eq. (10), reduces to [1]:

εσ,KL = 1 −
1
|Ω|

1
σ2

M∑
i=1

λi (12)

For this special case, the truncated KL expansion is also optimal
with respect to the mean error variance.

2.5. Non-Gaussian translation random fields
General non-Gaussian random fields are not suitable to be ex-

pressed by means of Gaussian random fields. If a non-Gaussian
random field belongs to the class of translation fields, it can be
expressed in terms of a Gaussian random field through a non-
linear mapping of the form Htransl.(x, θ) = g(H(x, θ)), where
Htransl.(x, θ) represents the non-Gaussian random field defined
in terms of the Gaussian field H(x, θ) and the strictly increasing
nonlinear mapping g : R → R [27]. Discretization of the field
Htransl.(x, θ) is achieved by replacing H(x, θ) by its KL expan-
sion H̃(x, θ) and applying H̃transl.(x, θ) = g(H̃(x, θ)). However,
it cannot be confirmed that the transformed field H̃transl.(x, θ) in-
herits the optimality property that the Gaussian random field ap-
proximation H̃(x, θ) may possess [18]. All random field models
used in reliability analysis and probabilistic mechanics belong
essentially to the class of translation fields.

A subclass of translation random fields constitute fields
where the Nataf multivariate distribution [28] is applied to
perform the nonlinear mapping g(·). For this class of trans-
lation random fields, the underlying Gaussian field has zero
mean and unit variance. Its autocorrelation coefficient func-
tion ρ(x, x′) is linked to the target autocorrelation coefficient
function ρtransl.(x, x′) of the desired non-Gaussian field through
an integral equation [18]. However, not for all ρtransl.(x, x′) a
corresponding ρ(x, x′) can be found [29]. Moreover, it is com-
putationally demanding to evaluate a ρ(x, x′) that is associated
with a given ρtransl.(x, x′), because of their implicit relationship
in form of an integral equation. Therefore, it is often simpler
to estimate the autocorrelation coefficient function of the un-
derlying Gaussian random field ρ(x, x′) directly. This can be
achieved by transforming available data to Gaussian data using
the inverse mapping g−1 : R → R. It should be noted that a
direct estimation of ρ(x, x′) will result in a different autocorre-
lation function of H(x, θ) than the one arising from the solu-
tion of the integral equation equation according to translation

field theory. However, such a direct estimation will overcome
the problem that often occurs when the solution of the integral
equation does not result in an autocorrelation function that is
nonnegative definite.

3. Numerical methods to solve the KL expansion

3.1. Introduction

Integral eigenvalue problems of the type given in Eq. (6) are
difficult to solve analytically except for a few autocovariance
functions defined on domains Ω of simple geometric shape.
Analytical solutions for exponential and triangular kernels are
discussed in [2] for one-dimensional domains. Extensions to
multidimensional rectangular domains can be derived assum-
ing a separable covariance structure (e.g., see [1]). In general,
the integral eigenvalue problem is solved numerically. The ran-
dom field approximation of the truncated KL expansion given
in Eq. (7) is approximated as:

Ĥ(x, θ) = µ(x) +

M∑
i=1

√
λ̂i ϕ̂i(x) ξ̂i(θ) (13)

where λ̂i and ϕ̂i are approximations to the true eigenvalues λi

and eigenfunctions ϕi. ξ̂i(θ) are standard uncorrelated random
variables, i.e., E

[
ξ̂i(θ) ξ̂ j(θ)

]
= δi j ∀ i, j ≤ M. Note that due

to the approximate character of the numerical solution, the ran-
dom variables ξ̂i are not necessarily orthogonal to the random
variables ξi used in the representation of Eq. (5). This means
that the expression for the error variance given in Eq. (9) can-
not be derived from Eq. (2) for the numerical approximation of
the KL expansion. Therefore, the error measures listed in sec-
tion 2.4 are not strictly valid for the approximated truncated KL
expansion. Moreover, it is important to note that the random
field approximation given in Eq. (13) does no longer possess
the optimality property of the truncated analytical KL expan-
sion.

Numerical algorithms for the solution of Fredholm integral
eigenvalue problems approximate the eigenfunctions by a set
of functions h j : Ω→ R as:

ϕi(x) ≈ ϕ̂i(x) =

N∑
j=1

di
j h j(x) (14)

where the coefficients di
j ∈ R have to be determined. In general,

all algorithms can be categorized into three main categories:
degenerate kernel methods, Nyström methods, and projection
methods. Projection methods can be further subdivided into
collocation methods and Galerkin methods.

3.2. Nyström method

In the Nyström method [4], the integral in the eigenvalue
problem of Eq. (6) is approximated by a numerical integra-
tion scheme. Applications to integral eigenvalue problems pub-
lished in literature include [30, 31, 32]. Numerical algorithms

4



are discussed in [33, 34]. The problem is approximated as:

N∑
j=1

w j Cov(x, x j) ϕ̂i(x j) = λ̂iϕ̂i(x) (15)

where x j ∈ Ω with j ∈ {1, . . . ,N} , N ∈ N represent a finite set
of integration points, and w j is the integration weight associated
with each x j. For a given N, the distribution of the integration
points x j and the value of the integration weights w j depend on
the applied numerical integration scheme. Special integration
techniques exist for kernels that are non-differentiable on the
diagonal, see [33, 34]. It is assumed that for the applied nu-
merical integration scheme, the solution of Eq. (15) converges
against the analytical solution with increasing N.

In the Nyström method, Eq. (15) is solved at the integration
points, i.e.:

N∑
j=1

w j Cov(xn, x j) ϕ̂i(x j) = λ̂iϕ̂i(xn), n = 1, . . . ,N (16)

The above system of equations can be formulated in matrix no-
tation as

CWyi = λ̂iyi (17)

where C is a symmetric positive semi-definite N × N matrix
with elements cn j = Cov(xn, x j), W is a diagonal matrix of size
N with nonnegative diagonal entries W j j = w j, and yi is a N-
dimensional vector whose nth entry is yi,n = ϕ̂i(xn). Since the
integration weights w j are nonnegative, the matrix W is sym-
metric and positive semi-definite. The problem in Eq. (17) is
a matrix eigenvalue problem. This matrix eigenvalue problem
can be reformulated to an equivalent matrix eigenvalue problem
By∗i = λ̂iy∗i , where the matrix B is defined as B = W 1

2 CW 1
2 ,

where W 1
2 is a diagonal matrix with entries

(
W 1

2

)
j j

=
√w j.

The matrix B is a symmetric positive semi-definite matrix and,
thus, the eigenvalues λ̂i are nonnegative real numbers and the
eigenvectors y∗i are orthogonal to each other. The eigenvec-
tors yi can be obtain as yi = W− 1

2 y∗i , where W− 1
2 denotes the

inverse of the matrix W 1
2 .

Solving Eq. (15) for ϕ̂i(x), we obtain the so-called Nyström
interpolation formula of the eigenfunction ϕ̂i(x). Taking into
account that ϕ̂i(x j) = 1

√w j
y∗i, j, this results in:

ϕ̂i(x) =
1
λ̂i

N∑
j=1

√
w j y∗i, j Cov(x, x j) (18)

where y∗i, j is the jth element of the eigenvector y∗i .
The eigenfunctions have to be normalized such that∫

Ω
(ϕ̂i(x))2 dx = 1. Applying a numerical integration scheme,

the inner product
∫

Ω
ϕ̂i(x) ϕ̂ j(x) dx can be approximated as∑N

n=1 wn ϕ̂i(xn) ϕ̂ j(xn). Using the same integration points and
integration weights as the ones used in Eq. (16), the approxima-
tion of the inner product can be simplified to

∫
Ω
ϕ̂i(x) ϕ̂ j(x) dx ≈(

y∗i
)T

y∗j . Therefore, the approximate eigenfunctions are or-
thonormal if and only if the eigenvectors are orthonormal.

Equivalence of the EOLE method with the Nyström method.
The expansion optimal linear estimation (EOLE) method is a
series expansion method for discretization of random fields that
was developed in [18] based on linear estimation theory. Here
we show that the EOLE method with a uniform distribution of
points over the domain can be considered a special case of the
Nyström method.

Assume that points x j, j = 1, . . . ,N uniformly distributed
over the domain Ω are available. The points x j can be chosen
either at random by sampling the uniform distribution over Ω

or by application of the rectangle quadrature using the nodes of
an equispaced structured grid. If the domain Ω does not have a
simple shape, the integration procedure can be performed on a
geometrically simpler domain Ω∗ that contain Ω, i.e., Ω ⊆ Ω∗.
In this case, points outside of Ω are not taken into account. If
the points x j, j = 1, . . . ,N are selected with one of the above
procedures, then all the integration weights w j in the integration
scheme in Eq. (15) will be the same, i.e., w j = w ∀ j = 1, . . . ,N.
Consequently, matrix W in Eq. (17) can be written as W = wI,
where I is the identity matrix and w = |Ω|/N. In this special
case, the matrix eigenvalue problem of Eq. (17) can be refor-
mulated as:

Cyi = λ̂∗i yi (19)

where λ̂∗i is related to λ̂i in Eq. (17) as λ̂∗i = N
|Ω|
λ̂i. λ̂∗i and yi are

the eigenvalues and eigenfunctions of the covariance matrix C,
respectively. Assuming normalized eigenvectors yi, i.e., ‖yi‖ =

1 for all i, gives after some algebra the following approximate
truncated KL expansion:

Ĥ(x, θ) = µ(x) +

M∑
i=1

ξ̂i(θ)√
λ̂∗i

N∑
j=1

yi, j Cov(x, x j) (20)

where yi, j is the jth element of yi.
The matrix eigenvalue problem of Eq. (19) is the problem

that needs to be solved for the EOLE method, and the expan-
sion in Eq. (20) is equivalent to the one obtained in the EOLE
method. Consequently, the EOLE method is equivalent to an
approximate KL expansion, whereby the IEVP is solved by
the Nyström method with a uniform distribution of integration
points.

3.3. Projection methods

Due to the approximation of the eigenfunctions stated in
Eq. (14), the Fredholm integral equation of Eq. (6) can be
solved only approximately. Inserting Eq. (14) into Eq. (6) gives
the residual rIEVP(x):

rIEVP(x) =

N∑
j=1

di
j

(∫
Ω

Cov(x, x′)h j(x′) dx′ − λ̂ih j(x)
)

(21)

In projection methods, the coefficients di
1, . . . , d

i
N are deter-

mined such that this residual is minimized in some sense. In
the following, we discuss two different categories of projection
methods; collocation and Galerkin methods.
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3.4. Collocation methods
In collocation methods, the residual rIEVP defined in Eq. (21)

is minimized pointwise for a given set of points {xl}
P
l=1. Let A

and N be matrices of size P × N. The elements of A and N
are al j =

∫
Ω

Cov(xl, x) h j(x) dx and nl j = h j(xl), respectively.
Moreover, let di be a vector of dimension N with elements
(di) j = di

j. For the special case of P = N, the problem can
be formulated as rIEVP(xl) = 0, ∀ l = 1, . . . , P, which is equiva-
lent to the following generalized matrix eigenvalue problem:

Adi = λ̂iNdi (22)

Note that P = N is a rather restrictive case, especially if higher-
order basis functions are applied: For higher-order basis func-
tions, a good approximation of the eigenfunctions is usually
achieved with a relatively small number of basis functions N,
whereas a large P is typically required to minimize Eq. (21) in
a global sense.

For the case P > N, the condition rIEVP(xl) = 0, ∀ l =

1, . . . , P cannot be satisfied at all points xl. In this case, the
coefficients di

j can be determined by means of a least squares
minimization, i.e., arg mindi

∑P
l=1 (rIEVP(xl))2 , ∀ i = 1, . . . ,N.

This leads to the following nonlinear matrix eigenvalue prob-
lem:

ATAdi − λ̂iATNdi − λ̂iNTAdi + λ̂2
i NTNdi = 0 (23)

This kind of eigenvalue problem is also known as quadratic
eigenvalue problem [35], and can be transformed to the follow-
ing generalized matrix eigenvalue problem:(

ATA 0
0 I

) (
di

ci

)
= λ̂i

(
NTA + ATN −NTN

I 0

) (
di

ci

)
(24)

where I is the identity matrix and ci = λ̂idi. According to [35]
the eigenvalues λ̂i are real and positive, and the eigenvectors di

are linearly independent. The numerical solution of quadratic
eigenvalue problems is discussed in [35].

3.5. Galerkin methods
3.5.1. Introduction

In Galerkin methods, the coefficients di
j are chosen such that

the residual rIEVP becomes orthogonal to the subspace of L2(Ω)
spanned by the basis functions

{
h j

}N

j=1
. Hence, the following

problem is solved:∫
Ω

rIEVP(x) h j(x) dx = 0 ∀ j = 1, . . . ,N (25)

Eq. (25) can be expressed in matrix notation as the generalized
matrix eigenvalue problem

Bdi = λ̂iMdi (26)

where B is a symmetric positive semi-definite N × N matrix
whose elements are defined as

bln =

∫
Ω

hl(x)
∫

Ω

Cov(x, x′)hn(x′) dx′ dx (27)

and M is a symmetric positive definite N × N matrix with ele-
ments

mln =

∫
Ω

hl(x) hn(x) dx (28)

On three-dimensional domains, Eq. (27) constitutes a six-
folded integral. This renders the assembly of matrix B com-
putationally expensive. To speed up the assembly of B, it is
suggested in [13, 14] to approximate B as a hierarchical matrix
(H-matrix). If B is expressed as a hierarchical matrix, sub-
blocks of B that have small contribution to the overall system
are approximated as low-rank matrices. Therefore, not all co-
efficients bln have to be computed explicitly. Moreover, matrix
operations on hierarchic matrices can be performed with almost
linear complexity [15].

The advantage of Galerkin-based approaches compared to
the other investigated numerical methods is that the error is
minimized over the entire domain and not only at certain points
within the domain. The convergence behavior of the Galerkin
method with high-order basis functions is investigated in [5].

3.5.2. Finite element method
In practical problems, the domain Ω often has a complex ge-

ometrical shape. One solution is to partition the domain Ω into
multiple elements and construct a functional space such that
each function is non-zero only on a small number of neigh-
boring elements. This allows for the definition of local basis
functions defined on the elemental domains. This approach is
termed finite element method (FEM) and the partition of Ω is
called finite element mesh (e.g., [36]). The FEM was applied to
the solution of the IEVP of the KL expansion in [2]. If the ran-
dom field is needed as input for a finite element simulation, the
FEM is straightforward to implement because a finite element
mesh is readily available. In the FEM, the local basis functions
are typically chosen as piecewise linear polynomials. How-
ever, it is noted that the use of higher-order basis functions can
greatly improve the convergence behavior of the method [37].
The selection of appropriate high-order basis functions is dis-
cussed in Section 3.5.4. Contrary to other random field dis-
cretization methods, as for example, the midpoint method [38],
very fine meshes do not lead to numerical problems.

However, if a meshing of the domain is solely required for
random field discretization, meshless approaches might be pre-
ferred in order to overcome the obstacles of mesh generation.
A meshless approach for defining the basis functions in the
Galerkin method was investigated in [16] and [39]. However, it
should be noted that this method requires the evaluation of the
integrals over Ω defined in Eq. (27) and Eq. (28) and, therefore,
the shape of the domain Ω has to be considered for integration.

3.5.3. Finite cell method
Another quasi meshless approach is based on so-called finite

cells. The finite cell method (FCM) [17] was originally de-
veloped as an extension to the FEM for the solution of linear
elasticity problems. The FCM is a fictitious domain method of
higher approximation order. The principal idea of the method
is independent of the applied element basis functions and so far
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has been successfully tested for integrated Legendre polynomi-
als [17, 40, 41], as known from the p-version of the FEM, as
well as for B-splines [41] and NURBS [42]. The FCM is ex-
tended here for application to the solution of the IEVP in the
KL expansion.

Let Ω ⊂ Rd be the domain of interest and Ω∗ ⊂ Rd a ge-
ometrically simpler domain with Ω ⊆ Ω∗. The geometrically
simpler domain Ω∗ is called primitive domain, and the origi-
nal domain Ω is referred to as physical domain. In the FCM,
the primitive domain is meshed instead of the physical domain,
and, therefore, mesh generation is a trivial task. The elements
of the mesh of the primitive domain are referred to as cells and
the cell domain is denoted Ωe. The finite cell approach is illus-
trated in Fig. 1.

Consider a set of basis functions h∗j(x) ∈ L2(Ω∗) that form a
basis of a subspace in L2(Ω∗). In this regard, the approximation
of the eigenfunctions given in Eq. (14) is redefined as

ϕi(x) ≈ ϕ̂i(x) =

N∑
j=1

di
j h∗j(x) (29)

That is, the solution of the integral equation defined on
the physical domain Ω is approximated with basis functions
spanned over the primitive domain Ω∗. This is achieved by per-
forming a Galerkin projection on the space L2(Ω∗), while re-
quiring that the residual of (21) is minimized over the domain
Ω, i.e., ∫

Ω

rIEVP(x) h∗j(x) dx = 0 ∀ j = 1, . . . ,N (30)

The above leads to a generalized matrix eigenvalue problem
identical to (25), whereby the elements of matrices B and M can
be written as the following integrals over the primitive domain
Ω∗:

bln =

∫
Ω∗
α(x)h∗l (x)

∫
Ω∗

Cov(x, x′)h∗n(x′)α(x′) dx′ dx (31)

mln =

∫
Ω∗
α(x) h∗l (x) h∗n(x) dx (32)

The mapping α : Ω∗ → {0, 1} is one for x ∈ Ω and zero other-
wise. Hence, only the region of Ω∗ that is within the physical
domain Ω is considered in the integration. However, the ap-
proximation of the eigenfunctions ϕ̂i(x) extends to the region

Figure 1: The finite cell method - idea and notation.

outside of the physical domain, since the basis functions are
defined over the entire domain Ω∗. Therefore, the eigenfunc-
tions need to be normalized on the physical domain Ω, i.e.,∫

Ω∗
α(x) ϕ̂i(x)2 dx = 1.

Higher-order basis functions are of crucial importance for
the applicability of the method because they yield a fast rate
of convergence [17]. The selection of appropriate high order
polynomial basis functions for this problem is discussed in Sec-
tion 3.5.4.

Integration technique for the FCM. The FCM shifts the prob-
lem from mesh generation on geometrically complex domains
to the integration of discontinuous functions. An accurate eval-
uation of the integrals is essential for the effectiveness of the
method. However, the evaluation of the double integral over Ω∗

in Eq. (31) may involve considerable computational costs. This
is mainly due to the discontinuity that appears at the bound-
ary of the physical domain, denoted ∂Ω. The discontinuity is
caused by the indicator function α(x). If a cell Ωe is cut by
the boundary ∂Ω, standard Gaussian quadrature exhibits a slow
rate of convergence since here the integrand cannot be approx-
imated well by a polynomial function.

In order to overcome this obstacle, it is suggested to apply
a so-called staggered Gaussian quadrature scheme, proposed
in [40]. The idea of this numerical integration scheme is il-
lustrated in Fig. 2 for a finite cell that is cut by the boundary
∂Ω: The domain Ωe of a cell cut by ∂Ω is gradually divided
into sub-cells. For one-, two- and three-dimensional elements,
a binary-, quad- and oct-tree is used, respectively. A sub-cell is
further refined if it is cut by the boundary ∂Ω and if the level of
the sub-cell is smaller than the specified maximum tree-depth.
The level of the original finite cell is defined to be zero. In the
example depicted in Fig. 2, the maximum tree-depth is four.

Standard Gaussian integration is performed on each leaf sub-
cell of the resulting grid. In the context of this work, the number
of Gauss-points used to integrate on a leaf sub-cell of a certain
level is decreased with an increasing level of the sub-cell. This
is contrary to the approach presented in [17, 40, 41], where all
sub-cells are integrated with the full number of Gauss-points.
However, the smaller a sub-cell becomes, the better the func-
tion to integrate can be approximated by lower order polynomi-
als. Moreover, the contribution of a sub-cell to the total integral
decreases with an increasing level. In this work, the number of

Figure 2: Staggered Gaussian integration: mesh for integration on a finite cell
cut by ∂Ω.
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Gauss-points in each coordinate direction is halved at the third
level and again for all levels larger or equal than five. How-
ever, at least two Gauss-points in each coordinate direction are
used for all sub-cells with a level smaller than the maximum
tree-depth. For the sub-cells that are cut by ∂Ω, only a single
Gauss-point located in the barycenter of the cell is used. The
computation of the barycenters of all cut sub-cells is performed
once prior to the integration. The time needed to compute the
barycenters does not contribute much to the total time required
to solve the integral in Eq. (31).

The reduction of Gauss-points speeds up the evaluation of the
double integral in Eq. (31) significantly, compared to a numer-
ical integration using the full number of Gauss-points at each
sub-cell. Additionally, the use of a single integration point in
the barycenter of a sub-cell that is cut by ∂Ω leads to a smooth
convergence behavior with respect to an increasing maximum
tree-depth. The resolution of the boundary ∂Ω can be refined
by increasing the maximum tree-depth, but not by increasing
the total number of Gauss-points of a finite cell. Note that if a
cell is located completely outside of the physical domain, i.e.,
Ωe ∩ Ω = ∅, it does not have to be integrated since the integral
is zero.

Some kernels Cov(x, x′) are non-differentiable on the diago-
nal. Consequently, the integrand of the inner integral in Eq. (31)
is non-differentiable for x = x′, additionally to the discontinuity
at ∂Ω. Moreover, integration over cells that are not cut by ∂Ω

as well as over elements in the classical FEM is also affected
by non-differentiable kernels. This additional difficulty can be
dealt with by a slight modification of the integration scheme
proposed above: Instead of refining only the region around ∂Ω

with a high resolution, the entire domain of all cells (or ele-
ments) is refined with at least a predefined minimum resolu-
tion. However, a refinement is only required if both x and x′
are located in the same cell (or element). In the h-version of
the FEM, a finite element mesh consists usually of many ele-
ments. Fixing the current integration point x of the outer inte-
gral, only the element containing x needs to be refined with at
least a minimum resolution. Therefore, for the FEM, the loss in
efficiency due to non-differentiable kernels is almost negligible.
For the FCM, this does not hold since a small number of cells is
typically used due to the application of higher-order basis func-
tions. Consequently, for the proposed integration scheme and
non-differentiable kernels it is advantageous to refine Ω∗ using
multiple cells instead of just a single cell - to speed up the inte-
gration.

3.5.4. Selection of the basis functions
Different types of basis functions can be used in conjunction

with a Galerkin-based approach. For an optimal choice of ba-
sis functions, matrix M would become a diagonal matrix and,
hence, the generalized matrix eigenvalue problem of Eq. (26)
would reduce to a standard matrix eigenvalue problem. If the
domain Ω has a rectangular shape, the basis functions can be
selected such that they are defined globally on Ω, leading to a
spectral Galerkin discretization. In this case, matrix M would
become a diagonal matrix if the classical Legendre polynomials
are selected as basis functions. However, in a spectral approach,

the only way to improve the approximation is to increase the
polynomial order of the involved polynomials. This can lead
to numerical problems if the correlation length of the random
field becomes too small, since for such cases the required poly-
nomial order for an accurate approximation is typically large.

A more flexible approach is to define the basis functions lo-
cally on the element domains, as is done in the FEM and the
FCM. In this case, a hierarchic basis is of advantage, since it al-
lows a straightforward coupling of neighboring elements. Also,
in hierarchic functional spaces existing basis functions do not
change when the basis is extended, e.g., when the polynomial
order of the basis functions is increased.

In the following, we propose a new hierarchic polynomial
basis defined in terms of the Gegenbauer polynomials [43]. For
the problem at hand, this hierarchic basis leads to matrices with
a better condition number than the hierarchic basis introduced
by Szabó and Babuška [44]. Moreover, the proposed hierar-
chic basis leads to a sparse structure of M for one-dimensional
problems and two-/three-dimensional problems with structured
Cartesian meshes. The construction of a hierarchic basis de-
fined in terms of the integrated Legendre polynomials [44] is
discussed in [37].

Hierarchic Gegenbauer polynomials. In order to ensure con-
tinuity between the elemental domains, the first two one-
dimensional local basis functions of the hierarchic basis are
chosen as the following piecewise linear polynomials:

h1D
1 (η) =

1
2

(1 − η) (33)

h1D
2 (η) =

1
2

(1 + η) (34)

where η is the local coordinate that runs on the standard interval
[−1, 1]. All basis functions h1D

i (η) with i > 2 should satisfy the
conditions

h1D
i (−1) = 0 ∧ h1D

i (1) = 0 ∀ i > 2 (35)

For the problem at hand, we require

∫ 1

−1
h1D

i (η)h1D
j (η) dη = δi j ∀ i, j > 2 (36)

which ensures that the matrix M is sparse for one-dimensional
problems. The polynomial degree of h1D

i for i > 2 is equal to

Figure 3: The first eight hierarchic Gegenbauer polynomials.
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Figure 4: Structure of the local element mass matrix M obtained with the hier-
archic Gegenbauer polynomials for a one-dimensional problem.

i − 1. The two boundary conditions defined in Eq. (35) can be
enforced by defining the basis functions as

h1D
i (η) =

(
1 − η2

)
φi−3(η) ∀ i > 2 (37)

where φ j(η) with j ≥ 0 are polynomials of order j. The require-
ment of Eq. (36) is fulfilled if the polynomials φ j are chosen
as the normalized Gegenbauer polynomials with α = 2.5. The
Gegenbauer polynomials Cα

j are orthogonal to the weight func-

tion
(
1 − η2

)α− 1
2 . For the special case where α = 2.5, they can

be defined by means of the recursive formula:

C2.5
0 (η) = 1

C2.5
1 (η) = 5η

C2.5
i (η) =

1
i

[
2η(i + 1.5)C2.5

i−1(η) − (i + 3)C2.5
i−2(η)

]
The corresponding normalized Gegenbauer polynomials read:

φi(η) = ai ·C2.5
i (η) ∀ i ≥ 0

where the positive and non-zero scaling factor ai is defined as

ai =

√
i!(i + 2.5) [Γ(2.5)]2

π2−4Γ(i + 5)
∀ i ≥ 0

with Γ the Euler gamma function. The first eight basis func-
tions of the one-dimensional hierarchic Gegenbauer basis are
sketched in Fig. 3. A hierarchic basis for two- or three-
dimensional elements can be constructed from the set of one-
dimensional basis functions. Often this is done using either the
tensor product space that comprises all combinations of one-
dimensional basis functions or the trunk space that excludes
some higher-order combinations [37].

Note that among all one-dimensional hierarchic bases that
comply with Eqs. (33)–(35), the sparsity of the matrix M is
maximized for the choice of the hierarchic Gegenbauer poly-
nomials. This holds also for rectangular two-dimensional ele-
ments and three-dimensional elements that have the shape of
a rectangular cuboid. The structure of M for a single one-
dimensional element with higher-order basis functions is de-
picted in Fig. 4 . A strictly diagonal shape cannot be achieved
for M with a hierarchic basis. This is because h1D

3 (η) =

a0 (1 − η2) and, consequently,
∫ 1
−1 h1D

i (η)h1D
3 (η) dη > 0 if i = 1

or i = 2. For unstructured meshes in two- or three-dimensional
problems or for problems that are solved with the FCM, the hi-
erarchic Gegenbauer basis loses its optimality, i.e., the sparsity

of M decreases. In the FCM, this effect is caused by the cells
that are cut by the boundary ∂Ω. It is noted, however, this prob-
lem is present whenever a hierarchic basis is used in the context
of the FEM or FCM. In fact, the hierarchic Gegenbauer basis re-
sults in a relatively small condition number of M compared to
other hierarchic bases, such as the integrated Legendre polyno-
mials that are typically applied in the p-version of the FEM. If
a hierarchic basis is not enforced, a diagonal structure of M can
be obtained by means of Gram-Schmidt orthogonalization [45].
However, the problem of finding a diagonal structure becomes
involved if the mesh is unstructured or the FCM is applied.

3.5.5. Projection of the autocovariance function
The matrix B is computationally expensive to assemble.

The computational cost becomes especially high on three-
dimensional domains, since for this case Eq. (27) (or Eq. (31)
for the FCM) consists of a six-folded integral. An alternative to
the assembly of matrix B according to Eq. (27) (or Eq. (31)) is
to project the autocovariance function onto the space spanned
by the basis functions

{
h j

}N

j=1
(or

{
h∗j

}N

j=1
for the FCM):

Cov(x, x′) ≈
N∑

j=1

N∑
n=1

k jn h j(x) hn(x′) (38)

This approach is similar to the technique applied in the degener-
ate kernel methods (section 3.6). Note that the projection of the
autocovariance function decreases the accuracy of the random
field approximation, due to the approximation of the autoco-
variance function. This does not hold for the special case of
L2-projection.

Inserting Eq. (38) into Eq. (27) (or Eq. (31)) leads to the for-
mulation B = MKM, where the matrix K is a symmetric pos-
itive semi-definite N × N matrix whose elements k jn need to
be determined. In [46], the coefficients k jn were defined as the
covariance between nodes j and n of the finite element mesh
and a linear interpolation between the nodes was used as a pro-
jection approach. We investigate other approaches to perform
the projection, namely L2-projection, H1/2-projection and dis-
crete projection. The projection methods aim at minimizing the
residual rCov(x, x′):

rCov(x, x′) = Cov(x, x′) −
N∑

j=1

N∑
n=1

k jn h j(x) hn(x′) (39)

L2-projection. In L2-projection, the residual is minimized with
respect to∫

Ω

hl(x)
∫

Ω

rCov(x, x′) hm(x′) dx′ dx = 0 ∀ l,m = 1, . . . ,N

(40)
Inserting Eq. (39) into Eq. (40) and comparing the obtained
expression to Eq. (27) (or Eq. (31)) shows that the assembly
of matrix B according to Eq. (27) (or Eq. (31)) is equivalent
to a L2-projection of the autocovariance function. Moreover,
there is no gain in computational efficiency compared to solv-
ing Eq. (27) (or Eq. (31)) directly.
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H1/2-projection. H1/2-projection was developed for an effi-
cient estimation of coefficients of higher-order basis functions
for application of boundary conditions [47]. We discuss its
application to the projection of the covariance kernel on a set
of basis functions in conjunction with the FEM and FCM ap-
proaches. In H1/2-projection, the problem is not solved in one
global step as in L2-projection, but in a number of local steps.
This approach is only applicable if hierarchic basis functions
are used at the elemental domains. In a first step, the autoco-
variance function is evaluated at the nodes of the mesh. Linear
basis functions are used to interpolate between the nodes. In
the subsequent steps, the modes that have already been deter-
mined are subtracted from Eq. (39), and a series of local L2-
projections is applied to determine the remaining modes. That
is, in the second stage, the edge-modes are determined for each
edge separately. Thereafter, for two- and three-dimensional el-
ements, the face modes are determined for each face separately
in a third step. Finally, for three-dimensional elements, the in-
ternal modes have to be approximated for each element sepa-
rately in a last step. Compared to the L2-projection, the problem
is solved by means of several local L2-projections, which may
lead to significant gain in computational cost. The disadvantage
of the H1/2-projection is that its implementation in numerical
codes is complex - even for one-dimensional elements.

If only linear basis functions are applied, the problem re-
duces to the trivial case of computing the coefficients as k jn =

Cov(x j, xn), where x j and xn denote the coordinates of the nodes
of the mesh. The projection becomes equivalent to a linear in-
terpolation of the covariance at the nodes of the mesh. This
technique has been applied in [46]; it is referred to as linear
projection in the following.

Discrete projection. This projection method minimizes the
residual rCov(x, x′) pointwise at a given set of points {x j}

P
1 ,

where P denotes the number of points in the set, and
P ≥ N. Using a linear least squares minimization with
arg minK

∑P
k
∑P

l rCovr(xk, xl)2, the problem can be formulated
as:

N
T
Nk = N

T
c (41)

where N is a P2 × N2 matrix with coefficients n(kl),( jm) =

h j(xk) hm(xl), k is a vector of size N2 that contains all coeffi-
cients k jm, and c is a vector of size P2 whose coefficients are
defined as c(kl) = Cov(xk, xl). Due to symmetry of the solution
vector k, i.e., k(i j) = k( ji), the size of the problem to solve can
be condensed from N2 to N2+N

2 .

Contrary to L2- and H1/2-projection, for the discrete projec-
tion approach no explicit integration needs to be performed.
Therefore, the quality of the numerical solution depends, for
a given set of basis functions, solely on the number of points
used in the projection. The drawback of this projection method
is the size of the matrix N in the linear system of Eq. (41).

3.6. Degenerate kernel methods
In degenerate kernel methods [4], the kernel Cov(x, x′) is ap-

proximated as:

Cov(x, x′) ≈ K̂(x, x′) =

N∑
j=1

N∑
n=1

k jn α j(x) βn(x′) (42)

with coefficients k jn ∈ R, and linear independent functions
α1(x), . . . , αN(x) and β1(x′), . . . , βN(x′). The approximation
of (42) offers many alternatives on how to solve the IEVP of
Eq. (6), some of which lead to the methods already presented
in the previous sections. Therefore, the degenerate kernel ap-
proach is not considered explicitly here.

4. Numerical studies

4.1. Error measures
Computable expressions for the mean error variance or the

global mean square error cannot be derived for all of the nu-
merical algorithms presented in section 3. Therefore, two error
measures are introduced that can be evaluated numerically for
all investigated methods:

εVar =
1
|Ω|

∫
Ω

∣∣∣∣Var [H(x, θ)] − Var
[
Ĥ(x, θ)

]∣∣∣∣
Var [H(x, θ)]

dx (43)

εCov =
1
|Ω|

∫
Ω

∫
x′∈Ω

∣∣∣Γxx′ (x, x′) − Γ̂xx′ (x, x′)
∣∣∣ dx′∫

x′∈Ω |Γxx′ (x, x′)| dx′
dx (44)

where Γxx′ (x, x′) = Cov [H(x, θ),H(x′, θ)] and Γ̂xx′ (x, x′) =

Cov
[
Ĥ(x, θ), Ĥ(x′, θ)

]
.

For the analytical solution of the IEVP, the error measure εVar
is equivalent to the mean error variance defined in Eq. (3), since
Var [H(x, θ)] ≥ Var

[
H̃(x, θ)

]
∀ x ∈ Ω [2]. In practice, the latter

also holds for H̃(x, θ) = Ĥ(x, θ), except for cases where all nu-
merically computed eigenpairs are used in the expansion, i.e.,
when M = N. Therefore, εVar can be obtained by means of
Eq. (10) or Eq. (12), even if the approximated eigenvalues and
eigenfunctions are not equivalent to the analytical ones. How-
ever, it should be noted that εVar is not identical to the mean
error variance since E

[
ξ̂i(θ) ξ j(θ)

]
, δi j (see section 3.1).

The error measure εCov can be considered a more general
measure than εVar [48], since εVar accounts only for the quality
of the approximation of the variance, whereas εCov quantifies
the quality of the entire approximated covariance structure. It
should be noted that εVar = 0 does not imply that εCov = 0 as
well.

In order to compare the rate of convergence of the numerical
truncated KL expansion Ĥ(x, θ) to the analytical KL expansion
H̃(x, θ) for a fixed M, it is more appropriate to look at relative
errors

εVar,rel =
|εVar − εVar,ref |

εVar,ref
(45)

εCov,rel =
|εCov − εCov,ref |

εCov,ref
(46)
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where εVar and εCov are defined according to Eqs. (43) and (44)
respectively, and εVar,ref and εCov,ref are the errors obtained for
the corresponding analytical solution H̃(x, θ), i.e., substituting
H̃(x, θ) for Ĥ(x, θ) in Eqs. (43) and (44).

4.2. Autocorrelation coefficient functions

The behavior of the presented random field discretization
methods is investigated for the isotropic exponential, squared
exponential and sine autocorrelation coefficient functions, de-
fined respectively by [18]

ρA(|x − x′|) = exp
(
−
|x − x′|

lA

)
(47)

ρB(|x − x′|) = exp

− (
|x − x′|

lB

)2 (48)

ρC(|x − x′|) =
sin

(
|x−x′ |

lC

)
|x−x′ |

lC

(49)

where |x − x′| denotes the distance between x and x′, and lA, lB
and lC are the correlation lengths of the corresponding correla-
tion model.

Note that although the autocorrelation coefficient functions
selected here are isotropic, the methods discussed here can cope
with arbitrary types of autocorrelation coefficient functions (in-
cluding non-isotropic and non-homogeneous types). The nu-
merical procedures that were used to compute the examples
presented in this paper can be applied without modification for
problems with non-homogeneous types of autocorrelation co-
efficient functions. The error measures given in Eqs. (43) and
(44) are already formulated for non-homogeneous problems.

4.3. 1D example

As a first example, a one-dimensional random field defined
on a domain Ω of length one, i.e., Ω = [0, 1], is investigated.
The random field is assumed to have a constant standard devia-
tion ofσ = 1. The number of random variables in the expansion
is fixed to M = 10.

An autocorrelation coefficient function of exponential type
(type A in Eq. (47)) is selected. For this kind of problem, the
Fredholm IEVP of Eq. (6) can be solved analytically [2]. The
correlation length lA is chosen such that the error εVar,ref is ap-
proximately 5% (lA = 0.42385). It should be noted that the ex-
ponential correlation model is difficult to treat numerically be-
cause the kernel ρA(|x−x′|) is not differentiable at the diagonal,
i.e., for x = x′. Therefore, numerical integration must be han-
dled carefully. For the Nyström method, a non-differentiable
kernel implies that the approximated eigenfunctions will also
be non-differentiable.

In a first study, L2-projection is compared to H1/2-projection
in the Galerkin-based approach. It is reminded that H1/2 con-
sists of a series of localized L2-projections (compare section
3.5.5). For L2-projection, the matrices in Eq. (26) are assem-
bled according to Eqs. (27) and (28). The isolines of the error
measure εVar,rel are depicted in Fig. 5 for different numbers of
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Figure 5: Isolines of the relative error εVar,rel for a one-dimensional random
field of length one with σ = 1 and correlation structure ρA, lA = 0.42385;
M = 10.

elements Nel and various maximum polynomial orders p. It can
be seen that piecewise linear basis functions exhibit a slower
rate of convergence than higher-order basis functions. Further-
more, L2-projection leads to an error εVar,rel that is orders of
magnitude smaller than the error obtained with H1/2-projection.
Considering additionally the complexity of the H1/2-approach,
L2-projection is clearly the one to favor.

Fig. 6 shows the same study as Fig. 5 using the error mea-
sure εCov,rel instead of εVar,rel. The reference error εCov,ref re-
quired in Eq. (46) was obtained by means of a numerical inte-
gration of Eq. (44) using the analytical eigenvalues and eigen-
functions. Comparing both plots, it can be seen that conver-
gence with respect to εCov,rel is slower than for εVar,rel. How-
ever, the same conclusions can be drawn from Fig. 6 as were
drawn from Fig. 5. In Fig. 6, the isoline corresponding to
εCov,rel = 10−3 presents significant fluctuations between 4 and
15 elements. This implies that for seven elements and a poly-
nomial order of three εCov,rel < 10−3, whereas for ten elements
and a polynomial order of three εCov,rel > 10−3. Such fluctua-
tions can occur for increasing Nel if p is fixed, because the basis
functions of the case Nel = 7∧p = 3 are not a subset of the basis
functions of the case Nel = 10∧ p = 3. It is noted, however, that
for fixed Nel and increasing p convergence is smooth, because
the basis functions are hierarchic. Moreover, the fluctuations
do not occur in the convergence plot of εVar,rel (Fig. 5), which is
minimized by the KL expansion.

Looking at the results presented in Figs. 5 and 6, it seems that
the best approach would be to use only a single element and
to employ basis functions with a large maximum polynomial
order p. However, this approach is not recommended in most
cases since a very large p can lead to numerical problems in
the solution of the matrix eigenvalue problem. Therefore, we
suggest to restrict the maximum polynomial order of the basis
functions to p ≤ 12.

The comparison of the projection methods, presented in
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Figure 6: Isolines of the relative error εCov,rel for a one-dimensional random
field of length one with σ = 1 and correlation structure ρA, lA = 0.42385;
M = 10.

Figs. 5 and 6, does not include the discrete projection method,
because its error depends on the number of projection points
used for given Nel and p. For an infinite number of points, dis-
crete projection is equivalent to L2-projection. In Fig. 7 the
discrete projection (DP) method is compared with the Nyström
method and the collocation method for an increasing num-
ber of points P. For the Nyström method only the case with
equal weights is investigated, which is equivalent to the EOLE
method. For the collocation method only piecewise linear ba-
sis functions are used. The number of basis functions is chosen
equivalent to the number of points, i.e., P = N. For the discrete
projection approach, two different sets of basis functions are ap-
plied: For the first set 20 elements with a maximum polynomial
order of five are used, and for the second set 100 elements with
piecewise linear basis functions are employed. Both sets have
the same number of basis functions.

For the specified problem, the EOLE method, the collocation
method and the discrete projection approach exhibit approxi-
mately the same rate of convergence. For the discrete projec-
tion approach it is important to note that the chosen set of basis
functions must be capable of representing the eigenfunctions
with the required accuracy. The set using piecewise linear basis
functions lacks this quality for εVar,rel ≤ 5 · 10−5. The advantage
of the EOLE method and the discrete projection approach over
the collocation method is that they do not require an explicit in-
tegration. Moreover, the problem can be solved faster with the
EOLE method than with the discrete projection approach since
in the EOLE method no multiplication of matrices needs to be
performed additionally to the solution of the matrix eigenvalue
problem. Therefore, this method is easy to implement and due
to its simplicity very efficient in obtaining an approximate so-
lution.

Next, we examine the performance of the methods for the
differentiable kernels ρB and ρC defined in Eqs. (48) and (49),
respectively. As in the previous example, we take M = 10 ran-
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Figure 7: Convergence behavior of the Nyström method, collocation method
and discrete projection (DP) method for a random field with correlation struc-
ture ρA, lA = 0.42385 and σ = 1; M = 10.

dom variables in the expansion and the correlation lengths lB
and lC are chosen such that the error εVar,ref is approximately
5% (lB = 0.093065, lC = 0.031143). It is noted that with dif-
ferentiable kernels we can represent smaller correlation lengths
than with non-differentiable kernels, while keeping the same
number of random variables in the expansion. The reference
error εVar,ref was obtained numerically using L2-projection with
1000 elements and a maximum polynomial order of ten. Spe-
cial care was taken to ensure a good quality of the numerical
integrals involved by choosing the number of Gauss-points so
that convergence is achieved.

The isolines of the error measure εVar,rel are depicted for the
two correlation models in Figs. 8 and 9 for different numbers
of elements Nel and various maximum polynomial orders p.
Comparing both plots reveals that the two kernels ρB and ρC
behave analogously. Moreover, the convergence behavior of
L2-projection is similar to the one shown in Fig. 5 for the expo-
nential model. However, for the two differentiable correlation
structures, H1/2-projection performs better than for the non-
differentiable structure of exponential type. This is because the
differentiable kernels ρB and ρC can be approximated better by
a projection onto the basis functions than the kernel ρA. Nev-
ertheless, L2-projection still converges much faster than H1/2-
projection.

For one-dimensional problems, the time needed to obtain a
random field approximation is usually not an issue. Therefore,
in principle any of the investigated methods can be applied for
random field discretization. However, in most cases the EOLE
method is to be recommended, since it is relatively simple to
implement and solves the problem within a relatively short time
- without the need to perform an integration. On the other hand,
the Galerkin approach with L2-projection provides an elegant
solution that exhibits a fast rate of convergence, especially in
combination with higher-order basis functions.
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Figure 8: Isolines of the relative error εVar,rel for a one-dimensional random
field of length one with σ = 1 and correlation structure ρB, lB = 0.093065;
M = 10.

1 2 3 4 5 7 10 15 20 30 50 100
Number of elements Nel

1

2

4

5

7

10

15

20

M
ax

im
um

po
ly

no
m

ia
lo

rd
er

p

L2-projection
H1/2-projection

10 −2

10 −4

10 −2

10 −6 10 −8

10 −4
10 −10

10 −6
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M = 10.

4.4. 2D example (complex domain)

4.4.1. Squared exponential kernel
Mesh generation on one-dimensional domains is usually a

straightforward and trivial task. The same cannot be said for
two- or three-dimensional problems. In this example, the rect-
angular domain with a hole depicted in Fig. 10 is investigated.
The autocorrelation coefficient function of the random field is
assumed to be of squared exponential type ρB. The number
of random variables in the expansion is fixed to M = 30.
The random field is modeled with a constant standard devi-
ation and the correlation length lB was chosen such that the
error εVar,ref becomes approximately 5% (lB = 0.77). Three
different approaches for random field discretization are com-
pared: the FEM with bilinear basis functions, the FCM and the
Nyström method with equal integration weights (i.e., the EOLE
method). For the FCM, trunk space was used to construct the
hierarchic two-dimensional basis functions.

In the linear FEM, 4-node quadrilateral elements are applied
to mesh the physical domain Ω. The domain Ω is meshed by
means of an unstructured mesh generator [49]; an exemplary
finite element mesh is depicted in Fig. 11. The more elements
are used, the better Ω is represented by the mesh. We investi-
gate the convergence behavior of the random field discretization
with respect to an increasing number of elements. Additional to
the conventional L2-projection, linear projection is applied as a
special case of H1/2-projection.

In the FCM, the physical domain Ω is embedded in a so-
called primitive domain Ω∗ of simple geometric shape. Three
different structured meshes are studied for the discretization of
Ω∗: 1×1, 2×2 and 4×4 cells (Fig. 10). For each structured mesh,
the convergence behavior of the random field discretization is
investigated with respect to an increasing polynomial order of
the basis functions of the cells.

The EOLE method can be considered a truly meshless
method. In this study, the integration points are distributed uni-
formly over the primitive domain Ω∗ of simple geometric shape.
Points located outside of the physical domain Ω are not consid-
ered in the analysis. The convergence behavior of the random
field discretization is investigated with respect to an increasing
number of points.

24

4

Figure 10: Shape of the domain used in the 2D example
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Figure 11: Finite elment mesh with 2893 elements (N = 3052).
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Figure 12: Convergence of the relative error εVar,rel with respect to the size
of the matrix eigenvalue problem to solve. (squared exponential kernel ρB,
M = 30)

For each of the random field discretization methods, a matrix
eigenvalue problem must be solved. In a first study, the conver-
gence behavior of the relative error εVar,rel is investigated with
respect to the size of the matrix eigenvalue problem. The refer-
ence error εVar,ref was obtained numerically as 0.049931 using
the FCM with 4 × 4 cells and a maximum polynomial order of
15. The results of the analysis are depicted in Fig. 12. The finite
cell discretization scheme exhibits an exponential rate of con-
vergence. The influence of the coarseness of the finite cell mesh
is small. A smaller number of cells results in a faster conver-
gence. However, to reach the same relative error, a larger max-
imum polynomial order is required on a coarser mesh. Con-
trary to the exponential rate of convergence of the FCM, the
EOLE method and the linear FEM show only a linear rate of
convergence in the log–log plot in Fig. 12. The much faster
convergence of the FCM compared to the FEM is due to the
use of higher-order basis functions in the FCM. For the FEM,
it is observed that linear projection converges slower than L2-
projection on linear basis functions. Therefore, going through
the complex steps of implementing H1/2-projection for higher-
order basis functions appears to be dispensable. Since the size
of the matrix eigenvalue problem can become rather large (i.e.,
N � M) for the FEM and the EOLE method, it is often consid-
erable faster to compute only the M largest eigenvalues and cor-
responding eigenvectors instead of finding all the N eigenvalues
and eigenvectors. This can be achieved by means of Lanczos
algorithms for the solution of the matrix eigenvalue problem.

The size of the matrix eigenvalue problem to solve is only
one property of the overall solution process. Another factor that
has considerable influence on the overall computational cost
is the assembly of the matrices, which differs significantly be-
tween the different methods. Therefore, for practical purposes,
a comparison of the computational time needed to obtain an
approximation of the KL expansion of the random field is of
interest. This approximation is referred to as random field ap-
proximation in the following. The computational time to obtain
a random field approximation for given relative errors εVar,rel is
plotted in Fig. 13. The study was performed on a Intel R© CoreTM

i7-3770 running at 3.40 GHz. All investigated methods were
implemented in C++. Some effort was put into optimizing the
implementations. In this regard, the EOLE method is most effi-
cient. Except for errors smaller than 1 · 10−3, the linear FEM is
faster than the FCM. This is due to the time needed for the inte-
gration of discontinuous functions in the FCM; the faster rate of
convergence due to the use of higher-order basis functions can
compensate this only for errors smaller than 1 · 10−3. Contrary
to the finding of Fig. 12, it is better to use more than a single
cell. Compared to the other investigated methods, the linear
projection is very inefficient and, therefore, not of interest for
practical applications. The efficiency of the linear FEM might
be increased further by application of the H-matrix approach
proposed in [13, 14].

If the random field is required as input for a non-intrusive
finite element reliability analysis [10, 50], in each run of the
finite element method a realization of the random field needs
to be evaluated at every Gauss-point. For this type of problem,
a significant part of the overall runtime is spent in evaluating
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Figure 13: Time needed to obtain an approximation of the KL expansion of the
random field for a certain relative error εVar,rel. (squared exponential kernel ρB,
M = 30)

realizations of the random field. Therefore, it is relevant to
compare the random field discretization methods with respect
to the time needed to evaluate a single realization of the ran-
dom field. In this regard, no other method is more efficient than
the linear FEM. This is because independent of the accuracy of
the random field approximation, the number of basis functions
to evaluate for a realization of the field remains constant: for a
one-, two- and three-dimensional element two, four and eight
basis functions must be evaluated, respectively. On a Intel R©

CoreTM i7-3770 running at 3.40 GHz this time is approximately
thFEM = 1.13 · 10−6seconds on a two-dimensional element. For
all other methods, the time needed to obtain a realization was
weighted with thFEM. The results are presented in Fig. 14. The
computational costs of both the FCM and the EOLE method
increase with a decreasing relative error εVar,rel. However, the
EOLE method is more than an order of magnitude slower than
the FCM. This is due to the fact that in the EOLE method (and
for Nyström methods in general) the autocorrelation coefficient
functions must be computed at every integration point, whereas
in the FCM only the basis functions local to the cell must be
evaluated.

Therefore, if the time spent in the evaluation of random field
realizations has a major contribution to the overall runtime, the
EOLE method is not the best choice for random field discretiza-
tion. If a finite element mesh is available (e.g., as in non-
intrusive finite element reliability analysis), the use of the FEM
for the discretization of the random field is recommended. In
this case, the same mesh that is used for the finite element relia-
bility analysis should be used for the random field discretization
as well. To understand the reason for this one needs to consider
the fact that in FE reliability analysis, realizations of the ran-
dom field need to be computed at the Gauss-points. If the same
mesh is used, this is a trivial task, because the shape functions
that have to be evaluated are known. If two different meshes
are used, the element of the random field mesh in which the
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Figure 14: Relative time needed to evaluate a realization of the random field
for a certain relative error εVar,rel. The results are relative to thFEM. (kernel ρB,
M = 30)

Gauss-point of interest is located has to be determined before-
hand. Especially if unstructured meshes are used for the ran-
dom field discretization, this is not a straightforward task. For
very small correlation lengths, the existing finite element mesh
might be too coarse to approximate the solution of the IEVP
well with linear basis functions. In this case higher-order basis
functions can be used to improve the quality of the random field
approximation. The use of higher-order basis functions is also
recommended to check if the approximation has already con-
verged with sufficient accuracy. If a mesh is not available, the
FCM is the method of choice.

4.4.2. Exponential kernel
The squared exponential kernel ρB that was used in the previ-

ous example is a differentiable kernel. In practical applications
often the non-differentiable exponential kernel ρA is used in-
stead [19]. In this study, the same problem as in section 4.4.1
is investigated, however, instead of the kernel ρB the kernel ρA
is applied. Again, the correlation length is chosen such that the
reference error is approximately 5% (i.e., lA = 4.2). The ker-
nel ρA is non-differentiable at the diagonal, i.e., at x = x′. As
is mentioned in section 3.5.3, this introduces yet another dif-
ficulty in the integration of Eqs. (27) and (31). The reference
error εVar,ref was obtained numerically as 0.049954 using the
FCM with 4 × 4 cells and a maximum polynomial order of 20.
Special care was taken to ensure a good quality of the numeri-
cal integrals involved by choosing the number of Gauss-points
so that convergence is achieved.

The time needed to obtain the random field approximation
is shown in Fig. 15. Comparing Fig. 15 with the results ob-
tained for the squared exponential kernel (Fig. 13), the most
noticeable difference is the efficiency of the EOLE method with
respect to the FEM. For the case with an exponential correla-
tion structure the two methods behave similar, and for the case
with the exponential squared correlation structure the EOLE
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Figure 15: Time needed to obtain an approximation of the KL expansion of the
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method is clearly more efficient than the FEM. This is because
the EOLE method approximates the eigenfunctions using the
kernel Cov(x, x′). If the kernel is not differentiable, the the-
oretically smooth eigenfunctions are approximated by a linear
combination of non-differentiable functions. For the exponen-
tial kernel, the relatively large time difference observed between
using a single cell and using four cells in the FCM can be ex-
plained by a more efficient numerical treatment of the integrals
in the later case (compare section 3.5.3). Apart from that, the
behavior of the investigated methods is similar to the one ob-
served for the exponential squared correlation structure.

5. Conclusion

This paper compared methods for the numerical solution of
the integral eigenvalue problem in the KL expansion in terms
of the computational costs for obtaining a random field approx-
imation and for evaluating a realization of the random field.
Moreover, a novel approach for discretization of random fields
based on the KL expansion was proposed, namely the use of the
finite cell method (FCM). For the implementation of the FCM, a
special integration technique as well as a novel hierarchic poly-
nomial basis were introduced.

Based on the assessment, the EOLE method (as a special
case of the Nyström method) is shown to be particularly effi-
cient in obtaining a random field approximation. In our opin-
ion, the EOLE method is the only true meshless method for
the discretization of the KL expansion. Furthermore, the EOLE
method is straightforward to implement - mainly because no
integration is required to assemble the matrix eigenvalue prob-
lem. This is contrary to the Galerkin-based approaches (i.e.,
FEM and FCM), where the coefficients of the matrix eigen-
value problem are obtained from a two-folded integration over
the domain of the random field. Additionally, the implemen-
tation of the FCM is involved, because the integrands become

discontinuous and higher-order basis functions are essential to
the method.

The advantage of the Galerkin-based procedures is an effi-
cient evaluation of realizations of the field, whereby the FEM
is faster than the FCM. In this regard, the FEM and the FCM
clearly outperform the Nyström method. This is of interest if
the time spent in the evaluation of random field realizations has
a major contribution to the overall runtime (e.g., in finite ele-
ment reliability analysis). If a finite element mesh is readily
available, the use of the FEM is recommended. If for complex
geometries a mesh is not available, the FCM is suggested. The
proposed FCM can be considered a quasi-meshless method, be-
cause a domain of simple geometric shape is meshed and, there-
fore, the shape of the actual physical domain does not have to be
taken into account for mesh generation. The use of higher-order
basis functions in the FEM and the FCM provides fast conver-
gence against the theoretical solution of the KL expansion for a
given mesh. However, for most meshes generated for applica-
tion of the linear FEM, linear basis functions provide already a
good approximation on the available mesh.

The collocation method as well as the H1/2-projection or the
discrete projection approach were found to have no particular
advantage compared to the other investigated methods.
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